SOX: short baseline neutrino oscillations with Borexino

Matthieu Vivier,
on behalf the Borexino/SOX collaboration
Two short baseline anomalies in $\bar{\nu}_e$ disappearance mode, each at the 3σ level:

- Gallium anomalies: calibration of the radiochemical solar experiments Gallex and SAGE with 51Cr \& 37Ar ν_e sources, $<L> \approx 0.5 - 2 \text{ m}$ [C. Giunti et al. (2010)]
- Short baseline reactor $\bar{\nu}_e$ experiments, $<L> \approx O(100 \text{ m})$ [G. Mention et al. (2011)]

Rate deficits can be explained by the addition of ≥ 1 sterile neutrino state

Combined fits using a (3+1) model point toward:

- $\Delta m^2_{\text{new}} \approx 0.1 - 5 \text{ eV}^2$
- $\sin^2 2\theta_{\text{new}} \approx 0.1$

Corresponds to meter scaled oscillation lengths for MeV ν_e

A decisive test requires observation of oscillation patterns: “oscillometry” concept

see J. Link’s plenary talk this morning for further details and discussions
The Borexino detector at LNGS

- Ultra low background neutrino detector
- Various physics program:
 - solar ν [see G. Testera’s talk]
 - geo ν [see A. Ianni’s talk]
 - Neutrino oscillation
 - ...

Water volume:
Muon veto & radioactivity shielding

Stainless steel sphere:
Equipped with 2200 PMTs

Stainless steel water tank:
Equipped with 208 PMTs

Detection volume:
Pseudocumene + PPO – $R=4.25$ m – $M=270$ t

Buffer volumes:
PC + DMP (scintillation light quencher)
Shielding against external gamma-rays
The SOX experiment

- Deployment of an intense (anti)neutrino source in a pit underneath the detector

- Rail and trolley system for source deployment

- "T-shaped" pit

- Borexino detector at hall C
The SOX experiment

- Deployment of an intense (anti)neutrino source in a pit underneath the detector
- Two-phase experiment:

1. **CeSOX**: 144Ce-144Pr $\bar{\nu}_e$ generator:
 - β^- emitter: $\bar{\nu}_e$ up to 3 MeV
 - 144Ce $T_{1/2} = 285$ days
 - Extracted from spent nuclear fuel
 - Detection via IBD:
 - threshold of 1.8 MeV
 - time coincidence between e^+ & n
 - \approx background free
 - Activity: ≈ 100 kCi ($\approx 3.7 \times 10^{15}$ Bq)

2. **CrSOX**: 51Cr ν_e generator:
 - EC source, monoenergetic ν_e: 753 KeV (90%) & 433 keV (10%)
 - $T_{1/2} = 27.7$ days
 - Produced by neutron irradiation of (stable) 50Cr
 - Detection via e^- scattering
 - Backgrounds: 210Po, 210Bi and solar ν_e
 - Activity: ≈ 10 Mci

- Mostly CeSOX latest developments will be covered in the next slides.
CeSOX sterile neutrino signature

\[\mathcal{P}(\theta, \Delta m^2, L, E) = 1 - \sin^2(2\theta) \sin^2(1.27\Delta m^2 \frac{L}{E}) \]

- \(\sin^2(2\theta) = 0.15 \)
- \(\Delta m^2 = 2\text{ eV}^2 \)

100 kCi \(^{144}\text{Ce}\) source in pit @ 8.5 m from detector center
- 1.5 years of data taking: \(\approx 10^4 \) events
- 5% energy resolution @ 1 MeV
- 15 cm spatial resolution
- Background free

IBD count rate as a function of L \& E in a (3+1) sterile neutrino model
$\mathcal{P}(\theta, \Delta m^2, L, E) = 1 - \sin^2(2\theta) \sin^2(1.27\Delta m^2 \frac{L}{E})$

- 100 kCi 144Ce source in pit @ 8.5 m from detector center
- 1.5 years of data taking: $\approx 10^4$ events
- 5% energy resolution @ 1 MeV
- 15 cm spatial resolution
- Background free

IBD count rate as a function of L/E in a (3+1) sterile neutrino model
CeSOX can potentially test most of the preferred parameter space in a really short time:

- **Shape-only measurement**
 - Smoking-gun signature
 - Sensitive to $\Delta m^2 \approx 0.5 - 5$ eV2 region
 - Requires good energy and vertex resolution
 - Dominated by statistical unc.

- **Rate + shape measurement**
 - Overall sensitivity improvement with respect to shape-only analysis
 - Especially sensitive for $\Delta m^2 \geq 5$ eV2
 - Need accurate activity measurement
 - Heat power measurement (calo.)
 - Power-to-activity conversion (β spec.)
 - Need good detection systematics
 - Energy, vertex reconstruction
 - IBD efficiency
 - …
Source production

- Done @ FSUE Mayak PA (Russia)
- 9 to 12 months production process:
 1. Standard radiochemical re-processing of a few tons of SNF from research reactor:
 Purex process \Rightarrow lanthanides and actinides concentrate
 2. Separation of Cerium (REE complex displacement chromatography)
 3. Calcination + pressing + encapsulation: ≈ 30 g of ^{144}Ce in 5 kg of CeO_2
Source shielding

- Any gamma radiation escaping the source (reminder, activity \(\approx \) few PBq) must be shielded
 - Biological protection
 - Avoid source-induced backgrounds in the detector

- 19-cm thick high density tungsten alloy shielding (HDTAS)
- Dimensions mostly driven by \(^{144}\text{Pr} 2.185\) MeV deexcitation gamma-ray (0.7% intensity).
- Manufactured at Xiamen Honglu Inc., China. Biggest tungsten shielding ever built...
- Delivery end of 2015

- Cylindrical shape
- \(H \approx 60\) cm – \(\phi \approx 60\) cm
- Density \(\approx 18.5\) g cm\(^{-3}\)
- 2.3 tons

Aluminium mock-up
- Transportation cask identified: MTR from Areva TN (21 tons)
- Itinerary route identified: from Mayak to LNGS through France
- Train/dedicated boat/truck: 3 weeks travel (5% activity loss)
- **Source transport authorized ✔**
- Expected delivery date at LNGS < Dec. 2016
Calorimetric measurement

- Measure CeANG thermal power with ≤ 1.5% precision
 - P ≈ 216 W/PBq
 - 800 W @ beginning of data taking

- Measure flow and temperature in and out a water circulation loop
 \[P_{\text{source}} = \frac{dM}{dt} \times C_p \times (T_{\text{out}} - T_{\text{in}}) + P_{\text{leak}} \]

- Calorimetric device designed to minimize leaks:
 - Conduction: suspension platform + insulation
 - Convection: vacuum vessel
 - Radiation: multilayer insulation + vacuum vessel thermalization

- Calibration with an electrical source
- Both source heat power and expected IBD interaction rate in Borexino depends on CeANG β/ν_e spectrum
- ^{144}Ce and ^{144}Pr beta spectra both present non-unique forbidden transitions, for which spectral shape is uncertain at the few % level
- Furthermore, past β spectrum measurements don’t agree well: up to 10-15% differences, which makes 10% uncertainty in the predicted IBD rate
- Need for a new β spectrum measurement to reach < 1% uncertainty on IBD rate

Past measurements of ^{144}Pr 1st branch beta spectra

Neutrino spectra from past measurements of ^{144}Pr 1st branch beta spectra (beta–branch level conversion)
Both source heat power and expected IBD interaction rate in Borexino depends on CeANG β/ν_e spectrum

144Ce and 144Pr beta spectra both present non-unique forbidden transitions, for which spectral shape is uncertain at the few % level

Furthermore, past β spectrum measurements don’t agree well: up to 10-15% differences, which makes 10% uncertainty in the predicted IBD rate

Two measurements on-going at Saclay, on Ce(NO$_3$)$_3$ samples received from PA Mayak:

- Chemical separation of 144Ce and 144Pr envisaged, to measure separately their corresponding spectra
- Other measurement techniques under consideration: Si-detector, magnetic spectrometer, …
Impact of source related systematics

Heat power measurement
- Necessary for rate+shape analysis
- Target precision: 1% (calorimetry)

\[\Delta m^2_{\alpha \beta} [eV^2] \]

\[\sin^2(2\theta_{14}) \]

\(^{144}\text{Ce} - 100\text{kCi} - 1.5\text{y} - 4.25\text{m}, 95\% \text{ CL} \)

\(\sigma = 0\% \)
\(\sigma = 1\% \)
\(\sigma = 1.5\% \)
\(\sigma = 2\% \)
\(\sigma = \text{inf.} \)

\[\text{PRELIMINARY} \]

\[\text{Best Fit, 95\% CL} \]
\[\text{Best Fit, 99\% CL} \]
\[\text{Best Fit, PRD 88 073008 (2013)} \]

\[\text{144Ce - 100kCi - 1.5y - 4.25m, 95% CL} \]

\(\sigma_{\alpha,\beta,\gamma} = 0\% \)
\(\sigma_{\alpha} = 0.5\%, \sigma_{\beta} = 5\% \)
\(\sigma_{\alpha} = 0.5\%, \sigma_{\beta} = 5\%, \sigma_{\gamma} = 1\% \)

\(\text{Best Fit, 95\% CL} \)
\(\text{Best Fit, 99\% CL} \)
\(\text{Best Fit, PRD 88 073008 (2013)} \)

\[\text{PRELIMINARY} \]

\(\Delta m^2_{\alpha \beta} [eV^2] \]

\(\sin^2(2\theta_{14}) \)

\(^{144}\text{Ce} - 100\text{kCi} - 1.5\text{y} - 4.25\text{m}, 95\% \text{ CL} \)

\[\text{no uncert.} \]
\[\text{s.f. (only)} \]
\[\text{s.f + activity} \]
Conclusion

- SOX will test the Gallium and reactor anomalies and search for $\bar{\nu}_e / \nu_e$ very short baseline oscillations

- First SOX phase, namely CeSOX, is soon to be started:
 - Source shielding in production: delivery by end of 2015

- CeANG characterization on-going. Goal: benefit from an additional rate information for ν_s search and make sure source impurities are kept to sufficiently low levels
 - Calorimetry
 - β spectrometry
 - γ, α and ICP-MS/AES spectrometry (not covered in this talk)

- Intense detector calibration campaign to achieve detection systematics at the 1-2 % level

- Future measurement with 51Cr under consideration (very relevant in case of a positive signal)

THANK YOU!