
Martin Urban, Martin Erdmann, Gero Müller

III Physics Institute A – RWTH Aachen University
Recent galactic magnetic field parameterizations predict deflection

- Direction and magnitude
- Here Janson and Farrar model: JF12

Protons
20-200 EeV
Galactic Coordinates
Expected Arrival Direction

- Only calculated for protons
- Implemented as magnetic field lens
 - Rigidity dependent transformation matrix
- Compare correlation analyses without and with GMF correction
Astrophysical Simulation

- Propagate 10^7 high energetic nuclei from sources to edge of Galaxy (CRPropa 3)
- Send cosmic rays to Earth using lensing technique with JF12 regular field lens

Isotropy using geometric exposure of Pierre Auger experiment

- 10% signal + 90% isotropy
- 231 events with $E \geq 52$ EeV
 - Like published dataset by Auger collaboration
- 22 sources
Angular distance

- Angular distances between cosmic ray and closest
 - Source (uncorrected)
 - Energy dependent expected arrival direction (corrected)

- Protons at small angles
- Preselection:
 - e.g. $\alpha, \alpha_{\text{GMF}} < \alpha_{\text{max}} = 5^\circ$
Magnetic Field Observable: Angular Asymmetry

- Change in angular distance: \[A \equiv 2 \frac{N(\alpha > \alpha_{\text{GMF}}) - N(\alpha < \alpha_{\text{GMF}})}{N_{\text{tot}}} \]
 \[= 0.96 \]
Magnetic Field Observable: Clustering

- Number of correlating events
 - per source
 - Expected arrival direction

- Cluster distribution probability
 - \(P = \text{multinomial distribution} \)

- Observable: \(\Delta \log_{10} P = \log_{10}(P_{\text{GMF}}) - \log_{10}(P) = -3.8 \)
Combine observables

- Astrophysical simulations
 - 231 cosmic rays
 - JF12 regular field

+ Expected arrival directions:
 - AGN sources
 - JF12 regular field

Investigate different hypotheses
Random Sources

- Astrophysical simulations
 - 231 cosmic rays
 - JF12 regular field

+ Expected arrival directions:
 - AGN sources
 - JF12 regular field

Random source directions
- 10000 variations
- 0.47 % show improvement in both observables

Source directions important
Uncertainty in Source Direction

- Astrophysical simulations
 - 231 cosmic rays
 - JF12 regular field

+ Expected arrival directions:
 - AGN sources
 - JF12 regular field

☐ AGN with 15° directional uncertainty
 - 10000 variations

Large uncertainties reduce sensitivity
Directional characteristics of galactic magnetic field

- Astrophysical simulations
 - 231 cosmic rays
 - JF12 regular field
- Expected arrival directions:
 - AGN sources
 - Inverted JF12 full

- Isotropic cosmic ray arrival directions
 - 10000 variations

Correct characteristics of magnetic field is essential to detect signal

Martin Urban – RWTH Aachen
Sensitivity to detect signal in isotropic background

- Scan of signal fraction
- 100 different signal realizations for each signal fraction f_{signal}
 - Detection efficiency ε_{det}: Number of simulations with ≥ 3 (5) σ difference from isotropy
Summary

- Enhanced correlation method: expected arrival directions
 - Include deflections in magnetic field

- Observables for magnetic field investigations
 - Angular asymmetry
 - Clustering

- Analysis method
 - is sensitive to galactic magnetic field structure
 - is sensitive to selected source positions
 - is sensitive to few percent signal fractions
BACKUP
Are the correlated cosmic rays unique?

- Astrophysical simulations
 - 231 cosmic rays
 - JF12 regular field

+ Expected arrival directions:
 - AGN sources
 - JF12 regular field

☐ Isotropic cosmic ray arrival directions
 - 10000 variations
 - 0.29 % show improvement in both variables

Correlated cosmic rays can be found by the method
Random Component of Galactic Magnetic Field

- Astrophysical simulations
 - 231 cosmic rays
 - JF12 regular field

+ Expected arrival directions:
 - AGN sources
 - JF12 regular + striated + random

- Isotropic cosmic ray arrival directions
 - 10000 variations
 - 0.10 % show improvement in both variables

Random component has no effect on analysis
Correlations of cosmic rays with expected arrival direction within 5°
Motivation for 5 ° cut

- Mean deflection for $E > 55$ EeV
- 10 Mpc distance
- Protons

Galactic Magnetic Lenses

Probability of a particle entering galaxy in pixel n is observed in direction m

Simulated probability distribution of extragalactic arrival

Probability distribution projected onto the Earth

Lenses suited for sources at Mpc distance from the observer

H-P Bretz, M.E., P. Schiffer, D., T. Winchen, AP 54C (2014) 110

Martin Urban – RWTH Aachen
Multinomial Probability

- Probability of cluster configuration

\[P(n_1, \ldots, n_{22}, N - N_{\text{hit}}) = \frac{N!}{n_1! \cdots n_{22}!(N - N_{\text{hit}})!} p_1^{n_1} \cdots p_{22}^{n_{22}} (1 - p_{\text{iso}})^{N - N_{\text{hit}}} \]

→ \(N \): Total number of cosmic rays
→ \(N_{\text{hit}} \): Number of cosmic rays correlation with neutrinos \(N_{\text{hit}} = \sum_i n_i \)
→ \(p_{\text{iso}} \): summed average source hit probability
→ \(i \): source identifier
→ \(p_i \): source average hit probability
→ \(n_i \): number of cosmic rays associated with source \(i \)
Sensitivity with Two-Point-Autocorrelation

- No signal visible in two-point-autocorrelation

![Graph showing sensitivity with two-point-autocorrelation](image_url)