Latest MAGIC discoveries pushing redshift boundaries in VHE AstroPhysics

Marina Manganaro
manganaro@iac.es

Instituto de Astrofísica de Canarias (IAC)
and Universidad de La Laguna (ULL)

J. Becerra, S. Buson, E. Lindfors, D. Mazin, M. Nievas, E. Prandini, J. Sitarek, A. Stamerra, F. Tavecchio, I. Vovk
on behalf of MAGIC and FERMI-LAT collaborations
Beyond the Gamma Ray Horizon, the Universe becomes opaque to VHE γ-ray radiation due to the interaction with Extragalactic Background Light.

For any given γ-ray energy, the Gamma Ray Horizon is defined as the source redshift for which the optical depth is $\tau(E, z) = 1$

$$\tau(E, z) = \int_0^z dz' \frac{dl}{dz'} \int_0^2 dx' \int_{-\infty}^{\infty} \frac{x}{2m^2E^4} d\epsilon \cdot n(\epsilon, z) \cdot \sigma \left[2xE\epsilon(1 + z')^2 \right] ; n(\epsilon, z) \text{ is the spectral density at } z$$

- O. Blanch, M. Martinez, (2005)a, APh, 23, 588
and the Very High Energy sky

- more than 60 extragalactic sources detected at VHE ($E \gtrsim 100\text{GeV}$), the farthest being PKS 1424 + 240, at $z > 0.6$... but wait!! not anymore!

- FSRQs are the most luminous and distant γ ray sources
- only 5 (maybe 6) VHE sources are Flat Spectrum Radio Quasars
- 4 (5?) of them were discovered by MAGIC

<table>
<thead>
<tr>
<th>source</th>
<th>redshift</th>
<th>discovered by</th>
<th>year</th>
</tr>
</thead>
<tbody>
<tr>
<td>3C 279</td>
<td>0.536</td>
<td>MAGIC</td>
<td>2006</td>
</tr>
<tr>
<td>PKS 1510 - 089</td>
<td>0.361</td>
<td>H. E. S. S.</td>
<td>2009</td>
</tr>
<tr>
<td>PKS 1222 + 216</td>
<td>0.432</td>
<td>MAGIC</td>
<td>2010</td>
</tr>
<tr>
<td>S4 0954 + 65 *</td>
<td>0.366</td>
<td>MAGIC</td>
<td>2015</td>
</tr>
<tr>
<td>QSO B0218 + 357</td>
<td>0.844</td>
<td>MAGIC</td>
<td>2014</td>
</tr>
<tr>
<td>PKS 1441 + 25</td>
<td>0.549</td>
<td>MAGIC</td>
<td>2015</td>
</tr>
</tbody>
</table>

redshift ~ 1 ! \Rightarrow
Flat Spectrum Radio Quasars at VHE

- Why only 5 (or 6) FSRQs detected in VHE?
 - Low synchrotron peak frequency
 - Intrinsic absorption
 - High redshift (typically)
- They can be mostly detected during flaring/spectral hardening states
- VHE help us to constrain the location of the emitting region
- Usually explained in the “far dissipation” external Compton scenario

VHE γ rays from the Universe’s middle age: PKS 1441 +25 and QSO B0218 +357 discoveries by MAGIC

Discovery of Very High Energy Gamma-Ray Emission from the distant FSRQ PKS 1441+25 with the MAGIC telescopes

ATel #7416; R. Mirzoyan (Max-Planck-Institute for Physics) on 20 Apr 2015; 02:09 UT
Credential Certification: Masahiro Teshima (mteshima@mppmu.mpg.de)

Subjects: Gamma Ray, TeV, VHE, AGN, Blazar
Referred to by ATel #: 7417, 7433, 7459

The MAGIC collaboration reports the discovery of very high energy (VHE; E>100 GeV) gamma-ray emission from the FSRQ PKS 1441+25 (RA=14h43m56.9s DEC=+25d01m44s, located at redshift z=0.939 (Shaw et al. 2012, ApJ, 748, 49). The object was observed with the MAGIC telescopes for ~2 hours during the night 2015 April 17/18, and for ~4 hours during 18/19. A preliminary analysis of the data yields a detection with a statistical significance of more than 6 standard deviations for the night of April 17/18, and more than 11 standard deviations for 18/19. This is the first time a significant signal at VHE gamma rays has been seen from PKS 1441+25. The flux above 80 GeV is estimated to be about 8e-11 cm^-2 s^-1 (16% of Crab Nebula flux). PKS 1441+25 has entered an exceptionally high state at optical, X-, and Gamma-ray frequencies (ATel #7402), which triggered the MAGIC observations. The Swift Follow-up observation from April 18/19 revealed that the high state in X-rays is continuing: http://www.swift.psu.edu/monitoring/source.php?source=PKS1441+25 MAGIC observations on PKS1441+25 will continue during the following nights, and multiwavelength observations are encouraged. The MAGIC contact persons for these observations are R. Mirzoyan (Razmik.Mirzoyan@mpp.mpg.de) and E. Lindfors (ellin@utu.fi).

MAGIC is a system of two 17m-diameter Imaging Atmospheric Cherenkov Telescopes located at the Canary island of La Palma, Spain, and designed to perform gamma-ray astronomy in the energy range from 50 GeV to greater than 50 TeV.

Discovery of Very High Energy Gamma-Ray Emission From Gravitationally Lensed Blazar S3 0218+357 With the MAGIC Telescopes

ATel #6349; Razmik Mirzoyan (Max-Planck-Institute for Physics) On Behalf of the MAGIC Collaboration on 28 jul 2014; 14:20 UT
Credential Certification: Razmik Mirzoyan (Razmik.Mirzoyan@mpp.mpg.de)

Subjects: Gamma Ray, >GeV, TeV, VHE, UHE, AGN, Blazar, Cosmic Rays, Microlensing Event

The MAGIC collaboration reports the discovery of very high energy (VHE; E>100 GeV) gamma-ray emission from S3 0218+357 (RA=02h21m05.5s, DEC=+35d45m14s, J2000.0). The object was observed with the MAGIC telescopes for a total of 3.5 hours from 2014/07/23 to 2014/07/26. The preliminary analysis of these data resulted in the detection of S3 0218+357 with a statistical significance of more than 5 standard deviations. From the preliminary analysis, we estimate the VHE flux of this detection to be about 15% of the flux from the Crab Nebula in the energy range 100-200 GeV. S3 0218+357 is a gravitationally lensed blazar located at the redshift of 0.944+/-.002 (Cohen et al., 2003, ApJ, 583, 67). Fermi-LAT observations during the flaring state of S3 0218+357 in 2012 revealed a series of flares with their counterparts after 11.46+/-.0.16 days delay, interpreted as due to the gravitational lensing effect (Cheung et al. 2014, ApJ, 782, L14). On 2014 July 13 and 14 Fermi-LAT detected another flaring episode (ATel #6316). Due to the full-moon time, the MAGIC telescopes were not operational and could not observe S3 0218+357 after the original alert. However, observations scheduled at the expected time of arrival of the gravitationally lensed component led to the first significant detection of a gravitationally lensed blazar and the most distant source detected at VHE with MAGIC telescopes to date. MAGIC observations on S3 0218+357 will continue during the next days and multiwavelength observations are encouraged. The MAGIC contact persons for these observations are R. Mirzoyan (Razmik.Mirzoyan@mpp.mpg.de) and J. Sitarek (jsitarek@ifae.es). MAGIC is a system of two 17m-diameter Imaging Atmospheric Cherenkov Telescopes located at the Canary island of La Palma, Spain, and designed to perform gamma-ray astrophysics in the energy range from 50 GeV to greater than 50 TeV.
the MAGIC telescopes

- Two 17m diameter Imaging Atmospheric Cherenkov telescopes
- Energy range from 50 GeV to >10 TeV
- Sensitivity above 300 GeV is $\sim 0.6\%$ of the Crab nebula flux (for 50 hs)
- Devoted to the investigation of particle acceleration in the most violent cosmic environments
- Investigating the origin of Galactic cosmic rays and the nature of dark matter *. Observing the gamma-ray emission from sources at cosmological distances, we measure the intensity and evolution of the extra-galactic background radiation, and perform tests of Lorentz Invariance.

* see Paola Giammaria’s talk, “Latest results on searches of Dark Matter signature in Galactic and extragalactic selected targets by the MAGIC telescopes”
Multi Wave Length observations with:

- Fermi-LAT → HE γ ray ($100\text{MeV} < HE < 100\text{GeV}$)
- NuSTAR → Hard X-ray
- Swift-XRT → X-ray
- Swift-UVOT → optical-UV
- KVA and Hans-Haffner → Optical R-band
- CANICA → Near Infrared
- Metsähovi → Radio
QSO B0218 + 357 (a. k. a. S30218 + 35)
J. Becerra, D. Dominis, E. Lindfors, M. Manganaro, D. Mazin, M. Nievas, A. Stamerra, I. Vovk and S. Buson

- First gravitationally lensed blazar at VHE! -

- The farthest source ever detected in VHE
- Redshift: 0.944 ± 0.002
- Lens: [PBK93] B0218 + 357G (probably spiral) at z=0.68
- In radio double image and Einstein’s ring is visible
- Separation of images: ~ 0.335 arc sec
Gravitational lensing

- If there is a substantial mass (e.g. a galaxy or a cluster) between the source and the observer the light path will be bent.

- For strong lensing: one can get Einstein’s ring (most pronounced for perfect alignment) and/or multiple images with different magnification and timing.

- Gravitational lensing is achromatic, but geometry effects can mimic wavelength dependence.
QSO B0218 + 357, MAGIC results

- On July 13/14 Fermi saw a flare not as strong as in 2012, but with a much harder spectrum (slope 1.4 – 1.6 and a 94 GeV photon)

- MAGIC couldn’t observe the original flare because of the full moon period, but got ready for the delayed emission

- The two nights around the time of the expected delayed emission lead to a detection with 5.7σ significance

→ expanding VHE sky from z= 0.5-0.6 to 0.94 !

* J. Sitarek et al., ICRC proceedings (2015)
M. L. Ahnen et al., in preparation
QSO B0218 + 357, MAGIC results
Multi Wave length LC

- MAGIC saw a single 2 day long flare at the expected time of arrival
- Being prepared for a flare we also have VHE observations before it
- Follow up observations were done for 2 weeks, but no further flares were observed
- No increase during the second component of the flare in x-rays and optical range

* J. Sitarek et al., ICRC proceedings (2015)
M. L. Ahnen et al., in preparation
PKS 1441 + 25: MAGIC results

J. Becerra, E. Lindfors, M. Manganaro, D. Mazin, M. Nievas, E. Prandini, J. Sitarek, A. Stamerra, F. Tavecchio

- in April 2015, an increased multiwavelength emission and an outburst seen by Fermi in GeV range, triggered MAGIC observations
- MAGIC detects the source with 25σ between 40 GeV and 250 GeV

Redshift: 0.93974 ± 0.00015
PKS 1441 + 25: MAGIC results

Multi Wave Length LC

- 4 different states of the source
- The average flux in the high state B is significantly larger than the one in C
- Similar pattern in X-rays, optical and HE
- No hint of intra-night variability detected

* M. L. Ahnen et al, submitted to ApJL
PKS 1441 + 25: MAGIC results

- shift of synchrotron and IC peaks to higher energies
- significant variation of the X-ray and HE γ ray spectral indexes
- emitting region originating in the jet just outside the broad line region
- high degree of optical polarization-the emission may come from a compressed region in the jet, like an internal shock

* M. L. Ahnen et al, submitted to ApJL
PKS 1441 + 25: MAGIC results

- probing EBL models at a distance never explored before in VHE
- measured spectrum is compatible with the present generation of EBL models
- robust upper limit on the relative EBL opacity α: < 1.73 for Dominguez 2011 model **
- EBL density constrained between 0.20 and 0.30μm

* M. L. Ahnen et al, submitted to ApJL
** A. Domínguez et al., (2011) MNRAS 410, 2556
Conclusions

- VHE emission detected for the first time from QSO B0218 + 357 and PKS 1441 + 25 by MAGIC
- With redshifts of 0.944 and 0.939 respectively they are the most distant sources ever observed in VHE
- Studying them allows us to understand more about blazars when the Universe was only half of its current age
- Constraints on the Extragalactic Background Light were given, and work is in progress