First Limits on the Dark Matter Cross-Section with the High Altitude Water Cherenkov (HAWC) Observatory

TAUP 2015

J. Patrick Harding
Los Alamos National Laboratory
10 September 2015
The High Altitude Water Cherenkov Observatory

Altitude: 4100 m (13000 ft) Latitude: 19° N
Water Cherenkov Detectors

- 300 WCD tanks
- 5 m x 7.3 m tanks
- 200,000L of water each
- 4 PMTs
 - 3 8” R5912
 - 1 10” R7081 HQE
- Inauguration of the completed array in March 2015
HAWC Sensitivity

- Average Angular Resolution: 0.5° (68% containment)
- Field-of-view: 2 sr (2/3 sky each day)
- Effective Area: 22500 m²
- Sensitivity: Observe Crab nebula each day

Abeysekara et al., Astropart. Phys. 50-52, 26 (2013)

Wide field-of-view, continuous operation
Dark Matter Annihilation and Decay

\[\text{Flux}_{\text{ann}} \propto \langle \sigma v \rangle \frac{dN_\gamma}{dE} \int_{\text{l.o.s.}} dx \rho^2(r) \]

\[\text{Flux}_{\text{decay}} \propto \frac{1}{\tau} \frac{1}{M_\chi} \frac{dN_\gamma}{dE} \int_{\text{l.o.s.}} dx \rho(r) \]
HAWC Sensitivity to Annihilating DM in the M31 Galaxy

- HAWC 5-year sensitivity to the dark matter annihilation cross-section (95% C.L. upper limits) for the M31 (Andromeda) galaxy
- HAWC limits assuming a conservative model of DM substructure (boosted) and without (smooth) are considered
- Limits from the H.E.S.S. observations of the Fornax galaxy cluster (14.5h) shown for comparison
- HAWC is sensitive to extended objects, like galaxies and galaxy clusters
HAWC Sensitivity to Annihilating DM in the Virgo Cluster

- HAWC 5-year sensitivity to the dark matter annihilation cross-section (95% C.L. upper limits) for the Virgo cluster
- HAWC limits assuming a conservative model of DM substructure (boosted) and without (smooth) are considered
- Limits from the H.E.S.S. observations of the Fornax galaxy cluster (14.5h) shown for comparison
- HAWC is most sensitive to high masses, which produce multi-TeV photons
HAWC Sensitivity to Decaying DM in the M31 Galaxy

- HAWC 5-year sensitivity to the dark matter decay lifetime (95% C.L. lower limits) for the M31 (Andromeda) galaxy
- Limits from the H.E.S.S. observations of the Fornax cluster (14.5h), MAGIC observations of the Perseus cluster (12h), and MAGIC sensitivity to the Perseus cluster (250h) shown for comparison
- HAWC is particularly sensitive to DM decay, which produces very extended emission (1.5° for M31, 3.3° for Virgo cluster)
HAWC Sensitivity to Decaying DM in the Virgo Cluster

- HAWC 5-year sensitivity to the dark matter decay lifetime (95% C.L. lower limits) for the Virgo cluster
- Limits from the H.E.S.S. observations of the Fornax cluster (14.5h), MAGIC observations of the Perseus cluster (12h), and MAGIC sensitivity to the Perseus cluster (250h) shown for comparison
- As the most massive object HAWC can observe, the Virgo cluster should give the best decay limits
HAWC DM Limits

- Data used in this analysis collected from August 2013 - March 2014
 - detector grew from 362 PMTs in 108 WCDs to 491 PMTs in 134 WCDs
- Limits calculated for WIMP masses annihilating with 100% branching ratios into:
 \[b\bar{b}, \tau^{+}\tau^{-}, \mu^{+}\mu^{-}, \tau\tau, W^{+}W^{-} \]
- \(M_{\chi} \) ranging from 0.5 TeV - 1000 TeV
- Individual limits done for 14 dwarf spheroidal galaxies, and were treated as point sources

Stacked analysis done with all 14 dwarf spheroidal galaxies to produce a combined limit for each DM annihilation channel

Two dark matter density profiles were used in this analysis: 1) Einasto (Segue 1 with \(\alpha = 0.303 \)) and 2) NFW (all other sources)
Sources Considered: 14 Dwarf Galaxies

<table>
<thead>
<tr>
<th>Source</th>
<th>RA</th>
<th>Dec</th>
<th>ρ_s GeV/cm3</th>
<th>r_s kpc</th>
<th>R kpc</th>
<th>J GeV2cm$^{-5}$sr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bootes 1</td>
<td>210.05</td>
<td>14.49</td>
<td>8.12</td>
<td>0.27</td>
<td>66</td>
<td>3.8×10^{18}</td>
</tr>
<tr>
<td>Canes Venatici I</td>
<td>202.04</td>
<td>33.57</td>
<td>0.79</td>
<td>0.55</td>
<td>218</td>
<td>2.9×10^{16}</td>
</tr>
<tr>
<td>Canes Venatici II</td>
<td>194.29</td>
<td>34.32</td>
<td>4.77</td>
<td>0.13</td>
<td>160</td>
<td>2.5×10^{16}</td>
</tr>
<tr>
<td>Coma Berenices</td>
<td>186.74</td>
<td>23.90</td>
<td>9.76</td>
<td>0.16</td>
<td>44</td>
<td>2.6×10^{18}</td>
</tr>
<tr>
<td>Draco</td>
<td>260.05</td>
<td>57.07</td>
<td>0.98</td>
<td>2.1</td>
<td>76</td>
<td>2.0×10^{19}</td>
</tr>
<tr>
<td>Hercules</td>
<td>247.72</td>
<td>12.75</td>
<td>0.80</td>
<td>0.32</td>
<td>132</td>
<td>1.6×10^{16}</td>
</tr>
<tr>
<td>Leo I</td>
<td>152.11</td>
<td>12.29</td>
<td>16.20</td>
<td>0.28</td>
<td>254</td>
<td>1.2×10^{18}</td>
</tr>
<tr>
<td>Leo II</td>
<td>168.34</td>
<td>22.13</td>
<td>162.01</td>
<td>0.06</td>
<td>233</td>
<td>1.2×10^{18}</td>
</tr>
<tr>
<td>Leo IV</td>
<td>173.21</td>
<td>-0.53</td>
<td>1.99</td>
<td>0.15</td>
<td>154</td>
<td>7.3×10^{15}</td>
</tr>
<tr>
<td>Segue 1</td>
<td>151.75</td>
<td>16.06</td>
<td>4.18</td>
<td>0.15</td>
<td>23</td>
<td>1.8×10^{19}</td>
</tr>
<tr>
<td>Sextans</td>
<td>153.28</td>
<td>-1.59</td>
<td>3.38</td>
<td>0.37</td>
<td>86</td>
<td>1.0×10^{18}</td>
</tr>
<tr>
<td>Ursa Major I</td>
<td>158.72</td>
<td>51.94</td>
<td>2.39</td>
<td>0.31</td>
<td>97</td>
<td>2.3×10^{17}</td>
</tr>
<tr>
<td>Ursa Major II</td>
<td>132.77</td>
<td>63.11</td>
<td>13.79</td>
<td>0.17</td>
<td>32</td>
<td>1.1×10^{19}</td>
</tr>
<tr>
<td>Ursa Minor</td>
<td>227.24</td>
<td>67.24</td>
<td>3.89</td>
<td>0.65</td>
<td>76</td>
<td>9.6×10^{18}</td>
</tr>
</tbody>
</table>
First Limits with HAWC Data

- Individual limits for 14 dwarf spheroidal galaxies within the HAWC field-of-view
- Combined limit for each annihilation channel from stacked analysis with all 14 sources (solid black line)
HAWC Combined Limits from the Dwarf Galaxies

- Individual limits for the 5 dwarf spheroidal galaxies HAWC is most sensitive to are shown to the left
- Segue 1, Draco, BootesI, Sextans and Coma Berenices
- 14 source combined limit is shown (solid black line)
- HAWC expected 14 source combined limit is also shown with the associated systematic error on the expected number of counts from simulation (hatched gray area)
Combined Limits

- HAWC 14 source combined limits for five annihilation channels in this analysis
- Limits are spectrally dependent
Comparison to Other Experiments

- Individual Segue1 limit for HAWC-111 180-day
- HAWC Segue 1 5-year predicted limit (dashed magenta line)
- Compared to Segue 1 limits from MAGIC and Fermi-LAT
HAWC is Now!

- HAWC is sensitive to gamma rays from DM annihilation and decay
- Dark matter limits with \(~1/3\) of the detector have been made
 - Final observations should be an order of magnitude more sensitive
- HAWC is complete and taking data with the full detector
 - Further analysis coming soon
Extras
Gamma/Hadron Separation

- Hadron-induced showers produce subshowers with a lot of transverse momentum and muons, so their distributions tend to clump in several regions on the array.
- Gamma-ray showers produce a smoother, more peaked distribution on the array.
- Looking for the sub-showers on the array and the larger spread of the hadronic showers, we can distinguish gammas from hadrons.
TeV-Mass Dark Matter

- High-mass high-flux DM proposed to explain several astrophysical observations
 - PAMELA/Fermi/AMS positron excess
 - H.E.S.S. Galactic center gamma-ray excess
 - IceCube PeV neutrinos
- Lack of observed DM at LHC implies DM mass > TeV
- Can be consistent with production of DM
 - DM production by decay of heavy particles
 - Sommerfeld enhancement give larger cross-section today than in the early universe
Comparison of HAWC Sources and Channels

- HAWC 5-year sensitivity to the dark matter annihilation cross-section for the $b\bar{b}$ and $\tau^+\tau^-$ annihilation channels
- At lower masses, the substructure in the M31 galaxy gives the best limits
- At higher masses, the large DM density at the Galactic center gives the best limits
- The harder leptonic channel is better constrained at low masses, though similarly constrained at high masses
Annihilation to Gauge Bosons

- HAWC 5-year sensitivity to the dark matter annihilation cross-section for the W^+W^- annihilation channel is similar to the $b\bar{b}$ channel.
- However, the exchange of the (relatively) light gauge bosons create a velocity-dependent resonance in the cross-section, increasing it by orders of magnitude. This is known as “Sommerfeld Enhancement”.
- For these channels, HAWC can probe thermal cross-sections.
Data for One Study

<table>
<thead>
<tr>
<th>Bin #</th>
<th>Obs. Sig</th>
<th>Bkg</th>
<th>bbbar</th>
<th>tautau</th>
<th>WW</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1126</td>
<td>3.18E7</td>
<td>239</td>
<td>278</td>
<td>226</td>
</tr>
<tr>
<td>1</td>
<td>3056</td>
<td>1.12E7</td>
<td>171</td>
<td>238</td>
<td>168</td>
</tr>
<tr>
<td>2</td>
<td>-809</td>
<td>2.47E6</td>
<td>84</td>
<td>145</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>-694</td>
<td>4.67E5</td>
<td>35</td>
<td>84</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>-31</td>
<td>4.55E5</td>
<td>16</td>
<td>54</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>-68</td>
<td>7.01E3</td>
<td>4.7</td>
<td>26</td>
<td>6.7</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>1.42E3</td>
<td>0.76</td>
<td>8.3</td>
<td>1.3</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>95.99</td>
<td>0.13</td>
<td>2.1</td>
<td>0.23</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>11.04</td>
<td>0.01</td>
<td>0.19</td>
<td>0.01</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>15.88</td>
<td>0</td>
<td>0.08</td>
<td>0</td>
</tr>
</tbody>
</table>

Data is for Segue 1 with a 10 TeV DM mass and \(\langle \sigma v \rangle = 10^{-22} \text{ cm}^3/\text{s}\)