AMS-02 Antiprotons Reloaded

Martin W. Winkler
in collaboration with R. Kappl and A. Reinert

based on JCAP 09/2014 and arXiv:1506.04145

TAUP 2015
Torino

September 9 2015
Why Antiprotons?

- low fraction of antimatter in cosmic rays $\bar{p}/p \sim 10^{-4}$
- very sensitive probe for new physics
- complementary to gamma ray searches

example: dark matter pair-annihilation
no clear spectral features expected

precise prediction for the \bar{p}-background is indispensable
Secondary Antiprotons

- scattering of primary cosmic rays (p, He) on the interstellar matter

$$q^{sec}(T) \sim \int dT' \left(\frac{d\sigma}{dT} \right) \bar{p}_{prod} n_{A_{ISM}} \Phi_A \quad A = H, He, \ldots$$

- primary proton and helium fluxes

- clear indication of spectral breaks
Antiproton Cross Sections

- **new calculation of** \bar{p} **production**

- **experimental data from NA49**

- **hyperon decay**

- **isospin enhanced** \bar{n} **production**

 ![Graph showing isospin enhanced \bar{n} production](image)

 - ρp Data
 - $p n$ Data
 - isospin factor 1
 - isospin factor 1.37

- **improved modeling of** proton-nucleus scattering

 ![Graph showing improved modeling of proton-nucleus scattering](image)
Propagation

- propagation: random walk through the galaxy

\[\nabla (-K \nabla N_{\bar{p}} + \mathbf{V}_c \cdot \nabla N_{\bar{p}}) + \partial_E (b_{\text{loss}} N_{\bar{p}} - K_{EE} \partial_E N_{\bar{p}}) + \Gamma_{\text{ann}} N_{\bar{p}} = q_{\bar{p}} \]

- diffusion equation

- semi-analytic solution in two-zone diffusion model

- five transport parameters: \(K_0, \delta, L, V_c, V_a \) \(\iff \) B/C analysis
Antiproton Excess in AMS-02?

- preliminary data on the antiproton fraction in cosmic rays
 A. Kounine, Talk at the AMS Days at CERN (2015)

- dark matter interpretation

- background underestimated?
preliminary B/C data

A. Oliva, Talk at the AMS Days at CERN (2015)

- indicate that propagation parameters are outdated ⇒ reanalysis
Primary Fluxes

- B/C ratio used to determine propagation parameters
- B is pure secondary
- C, N, O, Ne, Mg, Si spallation contributes $\gtrsim 98\%$ to B flux
- data from ACE, HEAO, CREAM-II, PAMELA

Spallation Cross Sections

- σ_{spall}: straight-ahead approximation
- constant at $T \gtrsim 10$ GeV

Webber parameterization

- large uncertainties, no high-energy data
- introduce energy bias

needed: experimental data on spallation cross sections
B/C Analysis

- new AMS-02 data on B/C ratio
 A. Oliva, Talk at the AMS Days at CERN (2015)

- selected 500 configurations, trend towards smaller $\delta = 0.3 - 0.6$
B/C Analysis

- new AMS-02 data on B/C ratio
 A. Oliva, Talk at the AMS Days at CERN (2015)

- selected 500 configurations, trend towards smaller $\delta = 0.3 - 0.6$
comparison of \bar{p} background with new AMS-02 data
A. Kounine, Talk at the AMS Days at CERN (2015)

- updated background consistent with data
Antiproton Fraction

- **comparison of \bar{p} background with new AMS-02 data**
 A. Kounine, Talk at the AMS Days at CERN (2015)

- **updated background consistent with data**
Antiproton Fraction

- comparison of \bar{p} background with new AMS-02 data
 A. Kounine, Talk at the AMS Days at CERN (2015)

- updated background consistent with data
Comparison of \bar{p}/p and B/C

![Graph showing comparison of \bar{p}/p and B/C]
Comparison of \bar{p}/p and B/C

\bar{p}/p flatter by $\sim R^{0.25}$.
Comparison of \bar{p}/p and B/C

\bar{p}/p flatter by $\sim R^{0.25}$

explained by injection
Remark on Propagation Uncertainties

\[\sigma^{(12\text{C} \rightarrow \text{B})} \] [mb]

\[\sigma(12\text{C} \rightarrow \text{B}) \] [mb]

AMS-02 Antiprotons

Martin W. Winkler (Bonn University)

September 9, 2015
Remark on Propagation Uncertainties

\[\sigma(^{12}\text{C} \rightarrow \text{B}) \text{ [mb]} \]

\[\sigma(^{12}\text{C} \rightarrow \text{B}) \text{ [mb]} \]

\[T [\text{GeV}] \]

\[T [\text{GeV} / \text{n}] \]

\[\frac{\bar{p}}{p} \text{ [pb]} \]

\[\frac{\bar{p}}{p} \text{ [pb]} \]

\[T [\text{GeV} / \text{n}] \]

\[\frac{\bar{p}}{p} \text{ [pb]} \]

AMS-02 Antiprotons

September 9 2015
Conclusion

- substantial progress in modeling antiproton production

- AMS-02 B/C data have strong impact on propagation parameters: higher slope of diffusion coefficient

- AMS-02 antiproton data are consistent with background