Measuring the neutrino mass ordering with KM3NeT ORCA

Antoine Kouchner

University Paris 7 Diderot- AstroParticle and Cosmology

14th International Conference on Topics in Astroparticle and Underground Physics

Torino, Italy

September 8, 2015
Previous expertise in the Deep-Sea

First Neutrino Telescope in the Sea, complete 2008 – 0.1km²
see http://antares.in2p3.fr/Publications/index.html
ANTARES: world 1st deep-sea NT

Presentation by A. Margiotta on 10th

- 25 storeys / line
- 3 PMTs / storey
- 885 PMTs @ 2475 m depth

- Deployed in 2001
- 40 km
- 14.5 m
- Junction box (since 2002)

Excellent angular resolution (<0.5° muons, ~2° electrons)

8 countries
31 institutes
~150 scientists + engineers

©Montanet
First achievements on neutrino oscillation

2-flavor approximation analysis with 2008-2010 data

\[P(\nu_\mu \rightarrow \nu_\mu) = 1 - \sin^2 2\theta_{32} \sin^2 \left(\frac{1.27 \Delta m^2_{32} L}{E_\nu} \right) = 1 - \sin^2 2\theta_{32} \sin^2 \left(\frac{16200 \Delta m^2_{32} \cos \Theta}{E_\nu} \right) \]

Oscillations maximal at 24 GeV for vertical neutrinos (muon range~120m)
Larger effect on low energy (single lines) than higher energy events (multi-lines)

Matter Effects and Mass Hierarchy

Requirements:
• $\Delta m^2_{13} \sim$ A matter potential must be significant but not overwhelming
• L large enough – use atmospheric neutrinos!
• Distinction between neutrinos and anti-neutrinos \rightarrow cross-sections!

$\sigma(\nu) \approx 2\sigma(\bar{\nu})$
Both muon- and electron-channels contribute to net hierarchy asymmetry. The electron channel is more robust against detector resolution effects. (Significances a la Akhmedov et al. JHEP 02 (2013) 082)
KM3NeT is a distributed research infrastructure with 2 main physics topics: Low-Energy studies of atmospheric neutrinos – High-Energy search for cosmic neutrinos.

Talk by P. Migliozzi on Thursday
The ORCA benchmark design

115 lines, 20m spaced, 18 DOMs/line 6m spaced

- 31 3” PMTs
- Digital photon counting
- Directional information

Instrumented volume ~3.8 Mt, 2070 OM
Optical background: 10kHz/PMT & 500Hz coincidence

- Wide angle of view
- More photocathode than 1 ANTARES storey
- Cost reduction compared to ANTARES
Event topologies

Track-like contains both a cascade and one track

Not to scale

Shower-like cascade

No track is identified
Ingredients for NMH measurement

- Efficient and high purity trigger algorithm for neutrino and atmospheric muon events
 - Exploit excellent photon counting of multi-PMT DOMs
 - Use causality of direct photons \rightarrow water almost scattering free for visible photons
- Reconstruction of cascade and track topologies
 - High efficiency down to relevant energies
 - Good resolution in energy and zenith angle
- Topology Identification (track \leftrightarrow cascades)
- Atmospheric muon rejection (no hardware veto)
ORCA shower reconstruction (ν_e)

1. Vertex fit:
 - maximum likelihood method based on time residuals
 - two fits: first robust prefit then more precise fit

2. Energy + direction fit:
 - PDF for number of expected photons depending on:
 E_v, Bjorken y, emission angle,
 OM orientation, distance(OM,vertex)
 - maximum likelihood method based probability that hits have been created by certain shower hypothesis (E_v, Bjorken y, direction)

Res. (σ): 0.5-1 m
Performances ν_e (cascades)

Excellent angular resolution
Dominated by kinematics

Energy resolution better than 25% in relevant range – close to Gaussian
ORCA Layout Optimization

- Switch off DOMs in proposed 115 line detector
 → 20 m interline spacing imposed by line deployment (sea operations)
 → 6, 9, 12, 18 m vertical spacing inter-DOM

Examples for shower reconstruction

All relevant quantities must be studied in details before adopting an optimum spacing

But substantial improvement possible
Performances ν_μ (tracks)

Excellent angular resolution
Dominated by kinematics

Energy resolution better than 25% in relevant range – close to Gaussian
Effective Masses

- Above 10 GeV M_{eff} close to instrumented volume
- Similar for cascades and tracks
Atmospheric muon rejection

- Simulation based on MUPAGE (Astropart. Phys. 25 (2006) 1) at depth 2475 m
- ν_μ reconstruction: cut on the reconstructed pseudo-vertex and quality parameters + BDT

Instrumental veto not mandatory

Tunable few % contamination achievable without too strong signal loss
Flavour (mis)-identification

- Discrimination of track-like (ν_μ^{CC}) and cascade-like (ν^{NC}, ν_ε^{CC}) events
- Classification uses “Random Decision Forest”
- Better than 80% above 10 GeV for all channels but ν_μ^{CC}
Systematic Effects

- Various systematic effects taking into account
 - Oscillation parameters
 - Δm^2, θ_{12} fixed; θ_{13} fitted within its error
 - ΔM^2, θ_{23}, δ_{CP} fitted unconstrained
 - Flux, cross section, detector related (average fluctuation w.r.t. nominal)
 - Overall normalisation (2.0%)
 - $\nu/\bar{\nu}$ ratio (4.0%)
 - e/μ ratio (1.2%)
 - NC scaling (11.0%)
 - Energy slope (0.5%)
 - Fitted unconstrained

[Graph showing KM3NeT PRELIMINARY with $\theta_{23} = 42^\circ$ IH, NH]

$\theta_{\nu} = 42^\circ$ 3 yrs
Sensitivity to Neutrino Mass Hierarchy

Dependence of sensitivity on time for fixed θ_{23} values δ_{CP} fixed to zero for easy comparison with other experiments

- ✔ Track vs shower event classification
- ✔ Full MC detector response matrices including misidentified and NC events
- ✔ Atmospheric muon contamination
- ✔ Neutral current event contamination
- ✔ Various Systematic uncertainties
Sensitivity to Neutrino Mass Hierarchy

Dependency of sensitivity on θ_{23} for 3 years
NH easier to determine than IH
Second octant easier than first octant
When fixing δ_{CP} to zero sensitivity increases by $\sim 0.5\sigma$

- Track vs shower event classification
- Full MC detector response matrices including misidentified and NC events
- Atmospheric muon contamination
- Neutral current event contamination
- Various Systematic uncertainties
Dependency of sensitivity on θ_{23} and δ_{CP} for NH and 3 years

Best case: large θ_{23} and $\delta_{\text{CP}} = 0^\circ$

Worst case: small θ_{23} and $\delta_{\text{CP}} = 180^\circ$
Sensitivity to PMNS parameters

\[\Delta M^2 - \text{unconstrained fit in conjunction to mass hierarchy hypothesis testing} \]

\[\rightarrow \text{Significant improvement of precision achievable} \]

\[\Delta M^2 \text{ – unconstrained fit in conjunction to mass hierarchy hypothesis testing} \]

\[\rightarrow \text{Significant improvement of precision achievable} \]

KM3NeT/ORCA PRELIMINARY

![Plot showing precision on \(\Delta M^2 \) vs operation time with and without systematics.]

- **With systematics, \(\delta_{CP} = 0 \)**
- **No systematics, \(\delta_{CP} = 0 \)**

PDG 2014
Sensitivity to PMNS parameters

Θ_{23} – unconstrained fit in conjunction to mass hierarchy hypothesis testing
World best measurement after few years of data taking
Modular ring of up to 6 nodes with double connection to shore for up to 120 detection units + Sea Science instruments

Possibility to redirect the ANTARES cable to ORCA

Phase 1 (funded and spent) : deploy a 6-7 string array in the ORCA configuration to demonstrate detection method in the GeV range.

Phase 2 (~40 M€ wo contingency) : 2017 deploy 1 building block 115 strings in French KM3NeT site. Completion by 2020

Requested funds

Soon available : ORCA report document (already ICRC’15 proceedings)
Thank you!

New collaborators are welcome to join the endeavour!
Atmospheric neutrinos measurements

2008-2011 data set

Two different energy estimators:
- \(\frac{dE}{dX} \) as evaluated from total collected charge
- Combined likelihood for hit/no-hit for all OMs

Atmospheric energy spectrum by unfolding measured spectrum averaged in 90°-180° zenith band

\[Ae = x \]
A: response matrix
E: true distribution
X: measured distribution

\[dE/dX \approx \rho = \frac{\sum Q_i}{\varepsilon(\bar{x})} \cdot \frac{1}{L_\mu(\bar{x})} \]
L: length
\(\varepsilon \): efficiency

\[\mathcal{L}(E_\mu) = \frac{1}{N_{OM}} \prod_i L_i(E_\mu) \]
free param

Good understanding of the detector

Smooth operation and data taking since May 2014

Nice Monte Carlo data agreement
ORCA Sensitivity to Inelasticity

- Use PDFs on the time residuals under the track (low-\(y\)) and shower (high-\(y\)) hypothesis
- Select \(y\)-interval corresponding to highest likelihood

"total significance ... may increase by (20 - 50)\%, thus effectively increasing the volume ... by factor 1.5 – 2"

Ribordy & Smirnov PRD, 87. 113007
(muon channel only)

Should be further exploited
PID, NC rejection, neutrinos/anti-neutrinos...
Several studies \rightarrow same conclusions

- D. Franco et al, JHEP 04 (2013) 008
- W. Winter, PRD 88 (2013) 013013

![Graph showing Δm^{2}_{31} correlation](image)

- PINGU LoJXiv1401.2046
 - Impact (increase) on 1year significance (total 1.75 σ)

![Bar chart showing impact on various parameters](image)

- Capozzi et al. arXiv1503.01999
 - Including E, zenith resolution/shape uncertainties +additional uncorrelated uncertainties
 - Total 5yrs loss in sensitivity from 24% to 40% under very pessimistic assumptions

Updates coming up in PINGU, suite of systematics being studied in ORCA
Studies of systematics

\(\sin^2 \theta_{23} \) in \([0.4; 0.6]\)

\(\mu \) and \(e \) indep !?

Shape 1.5% Residual 1.5%

Total 5yrs loss in sensitivity from 24% to 40%

Worst case \(3\sigma\) in 10 years

Capozzi et al. arXiv1503.01999

PINGU resolutions and effective masses
\(\nu_e^{\text{CC}} \) : median directional resolution

- error bars: 15% and 85% quantiles
- neutrinos and anti-neutrinos
- negligible differences between 5 and 10 kHz single PMT optical background rates
A phased implementation

PHASE 1:
Shore and deep-sea infrastructure at KM3NeT-Fr & KM3NeT-It
31 lines deployed by end 2016 (**3-4 x ANTARES sensitivity**)
Proof of feasibility of network of distributed neutrino telescopes and more?
ORCA demonstrator

2016 PHASE 2: ARCA (+80-90 M€) and ORCA (+40 M€)
230 lines (2 building blocks in Italy) + 115 lines (1 building block) in France
Investigation of IceCube signal

2020 KM3NeT NEXT: Neutrino astronomy
6 building blocks

31 M€ FUNDED ONGOING

ARCA and ORCA Letters of Intent in preparation

220-250 M€ ESFRI Roadmap