Measuring Low Energy Muons with IceTop

Javier G. Gonzalez
for the IceCube Collaboration
Before We Begin...

- IceTop detects the low energy muons far away from the shower axis ($E > 200$ MeV, $r > 300$ m).

- It is expected that the number of muons correlates with primary mass.

- The muon number is expected to scale roughly as a power of the primary energy:

 $$N_\mu(r) \propto A \left(\frac{E}{A\epsilon_\pi} \right)^{p_\mu} \quad p_\mu \sim 0.78$$

 Mass number A, primary energy E, (0.83 in Akeno)

Discrepancy with simulations claimed by Pierre Auger coll. Aab et al. PRD 91, 032003 (2015)

We will look at the energy dependence of the muon density at a fixed reference radius for near-vertical events.
The IceCube Collaboration

Approximately 300 physicists from 45 institutions in 12 countries

Funding Agencies

Fonds de la Recherche Scientifique (FRS-FNRS)
Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen)
Federal Ministry of Education & Research (BMBF)
German Research Foundation (DFG)

Deutsches Elektronen-Synchrotron (DESY)
Japan Society for the Promotion of Science (JSPS)
Knut and Alice Wallenberg Foundation
Swedish Polar Research Secretariat
The Swedish Research Council (VR)

University of Wisconsin Alumni Research Foundation (WARF)
US National Science Foundation (NSF)
The IceCube Detector

Deployed in 6 seasons, completed configuration: 2011-12
IceTop event reconstruction

M.G. Aartsen et al., PRD 88 (2013) 042004

\[S(r) = S_{125} e^{-\frac{d \sec \theta}{\lambda}} \left(\frac{r}{125 \, m} \right)^{-\beta - k \log\left(\frac{r}{125 \, m} \right)} \]

Attenuation due to snow

\[t(x) = t_0 + \left(\frac{x_c - x}{c} \right) \cdot n + \Delta t(R) \]

\[\Delta t(R) = aR^2 + b \left(\exp\left(-\frac{R^2}{2\sigma^2} \right) - 1 \right) \]
Example of a VEM calibration histogram for a particular tank, high-gain DOM in tank 61-A. IceCube Collaboration, ICRC 2011, Beijing
Charge-Distance to Axis Distribution

$28^\circ < \theta < 32^\circ$ \hspace{1cm} $10 \text{ PeV} < E < 12.6 \text{ PeV}$
Signal probability distribution:

\[p(S|1, \theta) = \int g(l)K(S|l)dl \]

Track length distribution

Detector response

\[K(S|\mu, \sigma, \lambda) = \frac{\lambda}{2} \exp\left(\frac{\lambda}{2}(2\mu + \lambda\sigma^2 - 2S)\right) \times \text{erfc}\left(\frac{\mu + \lambda\sigma^2 - S}{\sqrt{2}\sigma}\right) \]

1 VEM = 90 cm
Response to Multiple Muons

Single muons, various angles

Few muons, fixed angle (~10°)

Response to single muons obtained from Geant4 simulations of IceTop detectors

The response to n muons is the n-th order autoconvolution of the single-muon response

$$p(q|N_\mu, \theta) = \sum_n \frac{p^n e^{-\langle N_\mu \rangle}}{n!} p(q|n, \theta)$$

Expected number of muons

response to a number of muons

TAUP 2015, Torino
Comparison to Geant4

Data points: Tank response simulated with Geant4
Comparison to Geant4

Data points: Tank response simulated with Geant4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>muexp</td>
<td>0.10</td>
</tr>
<tr>
<td>zenith</td>
<td>48.19</td>
</tr>
<tr>
<td>pe-vem</td>
<td>97.00</td>
</tr>
<tr>
<td>tail</td>
<td>0.09</td>
</tr>
<tr>
<td>c-factor</td>
<td>1.00</td>
</tr>
<tr>
<td>jitter</td>
<td>0.00</td>
</tr>
<tr>
<td>height</td>
<td>0.90</td>
</tr>
</tbody>
</table>
\[\rho_\mu \approx \frac{N_{\text{tanks with muons}}}{N_{\text{all tanks}}} \frac{1}{A_{\text{tank}}} \]

\[p_{\mu \text{ hit}} = \frac{N_{\mu \geq 1}}{N_{\text{tanks}}} = 1 - e^{-\langle N_\mu \rangle} \]
Determination in Radial Bins

- Standard quality cuts
 (IceCube Collab., M.G. Aartsen et al., PRD 88 (2013) 042004)
- Zenith angle $\theta < 40^\circ$
- Shower size $S_{125} > 1$ VEM (~ 1 PeV)
- One month of data (June 2011)
Muon Number Vs Energy

IceCube preliminary

\[\rho_\mu(600 \text{ m}) / \text{m}^{-2} \]

\[10^0 \]
\[10^{-1} \]
\[10^{-2} \]
\[10^{-3} \]

\[E / \text{PeV} \]

Fe

\(p \)

This work

IceCube 2014

HiRes-MIA 2000

IceCube collaboration, ISVHECRI 204, arxiv:1501.03415
Conclusion

• With IceTop we can measure the average number of muons at large distances from the shower axis. We used 600 m at this time.
 – High-resolution measurement of muon density from 250 m to 1000 m
 – No air shower simulation input (except conversion $S_{125} \leftrightarrow$ energy)

• We still draw no conclusion regarding primary composition.
 – $\rho_{\mu}(600\text{m})$ in vertical events bracketed by p/Fe showers simulated with CORSIKA / Sibyll-2.1 / Fluka

• Systematic uncertainties under study:
 – EM contribution. A change in parametrization can alter the result.
 – Snow can introduce small effects in threshold.
 – Checks with air shower simulations.