

Search for double electron capture on ¹²⁴Xe with the XMASS-I detector

KATSUKI HIRAIDE (ICRR, THE UNIVERSITY OF TOKYO)

SEPTEMBER 7^{TH} , 2015

TAUP2015

124 Xe 2v double electron capture

• Natural xenon contains double electron capture nuclei as well as double beta decay nuclei

Isotope Natural abundance	¹²⁴ Xe 0.095%	¹²⁶ Xe 0.089%	¹²⁸ Xe 1.9%	¹²⁹ Xe 26.4%	¹³⁰ Xe 4.1%	¹³¹ Xe 21.2%	¹³² Xe 26.9%	¹³⁴ Xe 10.4%	¹³⁶ Xe 8.9%

• 124 Xe 2v double electron capture (ECEC)

¹²⁴Xe (g.s., 0⁺) + 2 e^{-} \rightarrow ¹²⁴Te (g.s., 0⁺) + 2 v_{e} + 2864keV

- In the case of 2K-capture, signal is total energy deposition of 63.6keV from atomic X-rays and Auger electrons.
- ¹²⁶Xe can also undergo 2v ECEC, but this reaction is much slower. (Q=896keV)

¹²⁴Xe 2v double electron capture (cont'd)

- Predictions for ¹²⁴Xe 2v ECEC half-life
 ➢ Wide spread between 10²⁰ and 10²⁴ years
- Experimental result on ¹²⁴Xe 2v ECEC
 - Y.M.Gavrilyuk et al., arXiv:1507.04520
 - Enriched 58.6g of ¹²⁴Xe; proportional counter
 - T_{1/2}(2v2K)>2.0x10²¹ years (90% CL)

Model	T _{1/2} (2vECEC) (yr)	Reference
QRPA	(0.4-8.8)x10 ²¹	Suhonen (2013)
QRPA	(2.9-7.3)x10 ²¹	Hirsch et al. (1994)
SU(4) _{στ}	(7-17.7)x10 ²¹	Rumyantsev et al. (1998)
PHFB	(7.1-18.0)x10 ²¹	Singh et al. (2007)
PHFB	(61.4-155.1)x10 ²¹	Shukla et al. (2007)
МСМ	(390-986.1)x10 ²¹	Aunola et al. (1996)

- Large volume dark matter detectors have potential to measure $^{124}\mbox{Xe}~2\nu$ ECEC
 - > D.-M.Mei et al. (2014): sensitivity test using XENON100 data $\rightarrow T_{1/2}(2v2K)>1.66x10^{21}$ years
 - > N.Barros et al. (2014): sensitivity study for future detectors

The XMASS experiment

Proposed as a multi purpose experiment with liquid Xenon

- Xenon detector for Weakly Interacting MASSive Particles (dark matter)
- Xenon MASSive detector for solar neutrino (pp/⁷Be solar neutrino)
- Xenon neutrino MASS detector (neutrinoless double beta decay)

Low energy threshold

Sensitive to e/γ events as well as nuclear recoil

WIMPs (by elastic and ¹²⁹Xe inelastic scattering), Solar axions, Bosonic super-WIMPs, Supernova neutrino burst, double electron capture, ...

Large target mass and its scalability

XMASS-2 (total ~24tons)

The XMASS-1 detector

- Located in the Kamioka mine in Japan (~2,700m water equivalent)
- A single-phase detector employing ~830kg of liquid xenon
- Equipped with 642 PMTs
- Active water shield

Detector calibration

- Various calibration sources: ⁵⁵Fe, ¹⁰⁹Cd, ²⁴¹Am, ⁵⁷Co, ¹³⁷Cs
- Light yield, optical parameters, position reconstruction

History of XMASS-1

Data set and event selection (1/2)

Data set

Dec 24, 2010 ~ May 10, 2012 (Total livetime of 165.9 days)

Pre-selection

- > No outer detector trigger is associated with the event.
- > The event is separated from the nearest event by at least 10 msec.
- RMS spread of hit timings of the event is less than 100 nsec.
- > Dead time due to pre-selection reduces the total effective livetime to 132.0 days.
- Fiducial volume cut (Radius cut)
 - > Event vertex is reconstructed based on the observed light distribution in the detector.
 - > Select events with the reconstructed position is within 15 cm from the center.
 - Fiducial mass of natural xenon is 41kg (It contains 39g of ¹²⁴Xe)

Data set and event selection (2/2)

Timing cut

Hits' timing is used to reject events from the detector inner surface that are wrongly reconstructed.

 $\delta T_m = t_{\text{mean of 2nd half of hits}} - t_{1\text{st hit}}$

 \succ Events with smaller δ Tm are less likely to be surface BG and selected.

- Band-like pattern cut
 - BG events occurred in groves in the inner detector surface make band-like pattern.

 $F_B = \frac{\text{Max. PE in a band of width 15cm}}{\text{Total PE in the event}}$

 \geq Events with larger F_B are likely to be those BG and rejected.

PMT position z [mm]

Expected ¹²⁴Xe 2v 2K-capture signal

Observed data

- -- Fiducial volume cut
- -- Timing cut
- -- Band-like pattern cut

- Effective live time of 132.0 days
- Fiducial mass of natural xenon is 41kg (It contains 39g of ¹²⁴Xe)
- 5 events remained in the signal region

Comparison with background prediction

+ Data -- Pb-214 background MC (w/ sys. error)

- Main background in this energy region is
 ²¹⁴Pb (daughter of ²²²Rn) in the detector.
- The amount of ²²²Rn was estimated from the observed rate of ²¹⁴Bi-²¹⁴Po decay.
- Expected number of ²¹⁴Pb BG events in the signal region: 5.3+/-0.5 events
- No significant excess in the signal region

Systematic uncertainty in signal prediction

Item	Fractional uncertainty
Abundance of ¹²⁴ Xe	+/-8.5%
Liquid xenon density	+/-0.5%
Energy scale	+0%, -8.6%
Energy resolution	+0%, -5.3%
Scintillation decay time	+0%, -7.1%
Radius cut (R<15cm)	+0%, -6.7%
Timing cut (T<12.54ns)	+3%, -0%
Band cut (B<0.248)	+/-5%
Total	+10.3%, -17.2%

- A sample was taken from our detector and its isotope composition was measured.
- Systematic uncertainty in signal efficiency was estimated from comparisons between data and MC simulation for ²⁴¹Am (60keV γ) calibration data at various positions.

Limit on ¹²⁴Xe 2v 2K-capture half-life

- We derive a lower limit using a Bayesian method
- Conditional probability density function for the decay rate Γ

$$P(\Gamma|n_{obs}) = \iiint \frac{e^{-\mu}\mu^{n_{obs}}}{n_{obs}!} \times P(\Gamma)P(\lambda)P(\varepsilon)P(\varepsilon_{corr})P(b)d\lambda d\varepsilon d\varepsilon_{corr}db$$

where
$$\mu = (\Gamma \lambda \varepsilon + b) \varepsilon_{corr}$$

• 90% confidence level limit

$$\frac{\int_{0}^{\Gamma_{limit}} P(\Gamma|n_{obs}) d\Gamma}{\int_{0}^{\infty} P(\Gamma|n_{obs}) d\Gamma} = 0.9$$

 $\begin{array}{l} \lambda: \mbox{ exposure} \\ \epsilon: \mbox{ signal efficiency (uncorrelated with BG)} \\ \epsilon_{\mbox{ corr}}: \mbox{ correlated efficiency} \\ b\epsilon_{\mbox{ corr}}: \mbox{ number of BG events in the signal region} \end{array}$

$$T_{1/2}(2\nu 2K) > \frac{\ln 2}{\Gamma_{limit}} = 4.7 \times 10^{21}$$
 years (90%CL)

Limit on ¹²⁴Xe 2v 2K-capture half-life

Conclusions

• XMASS is a multi-purpose experiment using liquid xenon at Kamioka in Japan.

- Direct detection of dark matter
- Neutrino-less double beta decay
- ⁷Be/pp solar neutrinos
- We performed a search for 2v double electron capture on ¹²⁴Xe using data collected with the XMASS-I detector.
 - > Effective livetime of 132.0 days, 39g of ¹²⁴Xe in fiducial volume.
 - > No significant excess above background was observed.
 - > We set a lower limit $T_{1/2}(2v2K)>4.7x10^{21}$ years (90% CL)

Backup slides

Data/MC comparison for 241Am calibration data

