Low Energy Neutrinos in Super-Kamiokande

Hiroyuki Sekiya
ICRR, University of Tokyo
for the Super-K Collaboration
Super-Kamiokande

- 50kton pure water Cherenkov detector
- 1km (2.7km w.e) underground in Kamioka
- 11129 50cm PMTs in Inner Detector
- 1885 20cm PMTs in Outer Detector

Physics targets of Super-Kamiokande

- Atmospheric ν
- ~ 100 GeV

This talk
- Solar ν
- Relic SN ν
- ~ 3.5 MeV ~ 20
- Proton decay
- WIMPs
- ~ 1 GeV
- Atmospheric ν
- TeV
Solar neutrinos observation
SK ⁸B Solar neutrino observation

- SK has observed solar neutrino for 18 years (~1.5 solar cycle)
 - ~77000 solar ν interactions

SK I-IV combined flux
2.341±0.044(stat.+syst.) x 10⁶ cm⁻² sec⁻¹

<table>
<thead>
<tr>
<th>Phase</th>
<th>Energy threshold MeV(kin.)</th>
<th>Live time (say)</th>
<th>⁸B Flux x 10⁶/cm²/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK-I</td>
<td>4.5</td>
<td>1496</td>
<td>2.38±0.02±0.08</td>
</tr>
<tr>
<td>SK-II</td>
<td>6.5</td>
<td>791</td>
<td>2.41±0.05+0.16-0.15</td>
</tr>
<tr>
<td>SK-III</td>
<td>4.0</td>
<td>548</td>
<td>2.40±0.04±0.05</td>
</tr>
<tr>
<td>SK-IV</td>
<td>3.5</td>
<td>2034</td>
<td>2.31±0.02±0.04</td>
</tr>
</tbody>
</table>

DATA/MC = 0.4459±0.0084(stat.+syst.)
Time variation of 8B solar neutrino flux

- No correlation with the 11 years solar activity is observed.
- Super-K solar rate measurements are fully consistent with a constant solar neutrino flux emitted by the Sun.
 - $\chi^2 = 13.10/18$ (dof)

Sun spot number was obtained by the web page of NASA
http://solarscience.msfc.nasa.gov/greenwch/spot_num.txt
Oscillation analysis: Solar global fit

- This SK update and other latest results are combined.

Combined solar fit with KamLAND

Without reactor θ_{13} constraint

~2σ tension in Δm_{21}^2

between solar and KamLAND

Non-zero θ_{13} at 2σ from solar+KamLAND

Good agreement with Daya Bay, RENO & DC
Search for the direct MSW signal

- Current main motivation of SK 8B ν observation

Energy spectrum distortion

Neutrino survival probability

Vacuum oscillation dominant

Solar + KamLAND
$\sin^2 \theta_{12} = 0.308$
$\Delta m_{21}^2 = 7.50 \times 10^{-5} \text{eV}^2$

Matter oscillation dominant

Solar
$\sin^2 \theta_{12} = 0.311$
$\Delta m_{21}^2 = 4.85 \times 10^{-5} \text{eV}^2$

Flux day-night asymmetry

"Nighttime regeneration" of ν_e by earth matter effect

$P_{\nu_e} = 1 - \frac{1}{2} \sin^2 2\theta_{13}$
SK I-IV combined recoil spectrum

- Test of “spectrum upturn”
 - MSW is slightly disfavored by
 - ~1.7 \(\sigma \) using the Solar + KamLAND best fit parameters
 - ~1.0 \(\sigma \) using the Solar Global best fit parameters.

<table>
<thead>
<tr>
<th>Total # of bins of SK I-IV is 83</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar + KamLAND</td>
<td>70.13</td>
</tr>
<tr>
<td>Solar global</td>
<td>68.14</td>
</tr>
<tr>
<td>Quadratic fit</td>
<td>67.67</td>
</tr>
<tr>
<td>Exponential</td>
<td>67.54</td>
</tr>
</tbody>
</table>

Neutrino energy spectrum is convoluted in the electron recoil spectrum. For de-convolution, generic functions are used as a survival probability;

\[
P_{\text{ev}}(E) = c_0 + c_1 \left(\frac{E}{\text{MeV}} \right)^{-10} + c_2 \left(\frac{E}{\text{MeV}} \right)^{-10}^2 \quad \text{(quadratic)}
\]

\[
P_{\text{ev}}(E) = e_0 + \frac{e_1}{e_2} \left(\exp \left(e_2 \left(\frac{E}{\text{MeV}} \right)^{-10} \right) - 1 \right) \quad \text{(exponential)}
\]
Day-Night flux asymmetry

This is the "direct" indication for matter enhanced neutrino oscillation.

<table>
<thead>
<tr>
<th></th>
<th>SK-I</th>
<th>SK-II</th>
<th>SK-III</th>
<th>SK-IV</th>
<th>combined</th>
<th>non-zero significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitted asymmetry amplitude</td>
<td>$\Delta m^2_{21}=4.84\times10^{-5}$ eV2</td>
<td>$\Delta m^2_{21}=7.50\times10^{-5}$ eV2</td>
<td>$-2.0\pm1.8\pm1.0%$</td>
<td>$-1.9\pm1.7\pm1.0%$</td>
<td>$-3.3\pm1.0\pm0.5%$</td>
<td>3.0σ</td>
</tr>
<tr>
<td></td>
<td>$\sin^2\theta_{12}=0.311$</td>
<td>$\sin^2\theta_{13}=0.025$</td>
<td>$-4.4\pm3.8\pm1.0%$</td>
<td>$-4.4\pm3.6\pm1.0%$</td>
<td>$-3.3\pm1.0\pm0.5%$</td>
<td>2.8σ</td>
</tr>
<tr>
<td></td>
<td>$\sin^2\theta_{12}=0.311$</td>
<td>$\sin^2\theta_{13}=0.025$</td>
<td>$-4.2\pm2.7\pm0.7%$</td>
<td>$-3.8\pm2.6\pm0.7%$</td>
<td>$-3.8\pm2.6\pm0.7%$</td>
<td>2.8σ</td>
</tr>
<tr>
<td></td>
<td>$\sin^2\theta_{12}=0.311$</td>
<td>$\sin^2\theta_{13}=0.025$</td>
<td>$-3.6\pm1.6\pm0.6%$</td>
<td>$-3.3\pm1.5\pm0.6%$</td>
<td>$-3.3\pm1.5\pm0.6%$</td>
<td>2.8σ</td>
</tr>
<tr>
<td></td>
<td>$\sin^2\theta_{12}=0.311$</td>
<td>$\sin^2\theta_{13}=0.025$</td>
<td>$-3.6\pm1.6\pm0.6%$</td>
<td>$-3.3\pm1.5\pm0.6%$</td>
<td>$-3.3\pm1.5\pm0.6%$</td>
<td>2.8σ</td>
</tr>
<tr>
<td></td>
<td>$\sin^2\theta_{12}=0.311$</td>
<td>$\sin^2\theta_{13}=0.025$</td>
<td>$-3.6\pm1.6\pm0.6%$</td>
<td>$-3.3\pm1.5\pm0.6%$</td>
<td>$-3.3\pm1.5\pm0.6%$</td>
<td>2.8σ</td>
</tr>
<tr>
<td></td>
<td>$\sin^2\theta_{12}=0.311$</td>
<td>$\sin^2\theta_{13}=0.025$</td>
<td>$-3.6\pm1.6\pm0.6%$</td>
<td>$-3.3\pm1.5\pm0.6%$</td>
<td>$-3.3\pm1.5\pm0.6%$</td>
<td>2.8σ</td>
</tr>
</tbody>
</table>

Solar best fit
$\sin^2\theta_{12}=0.311$
$\Delta m^2_{21}=4.85\times10^{-5}$ eV2

Solar+KamLAND
$\sin^2\theta_{12}=0.308$
$\Delta m^2_{21}=7.50\times10^{-5}$ eV2

- This is the "direct" indication for matter enhanced neutrino oscillation.
DSNB (SRN)

- 10^{10} stellar/galaxy $\times 10^{10}$ galaxies $\times 0.3\%$ (become SNe) $\sim O(10^{17})$ SNe

Neutrinos from past SNe

Theoretical flux prediction: $0.3\sim1.5$ /cm2/s (17.3MeV threshold)

Super-K should be most sensitive to $\bar{\nu}_e$
Status of DSNB search

- Search window for SRN at SK: From \(\sim 10\text{MeV} \) to \(\sim 30\text{MeV} \)
- Limited by BG. More than 1 order reduction is needed.
 - n tagging efficiency (by proton) is low...

Comparison with Expected \(\bar{\nu}_e \) spectra
PRD 79 08013(2009)

Search window for SRN at SK: From \(\sim 10\text{MeV} \) to \(\sim 30\text{MeV} \)
- Limited by BG. More than 1 order reduction is needed.
 - n tagging efficiency (by proton) is low...
SK-Gd project

- Identify $\bar{\nu}_e p$ events by neutron tagging with Gadolinium.
- Large cross section for thermal neutron (48.89kb)
- Neutron captured Gd emits 3-4 γs in total 8 MeV
- $\text{Gd}_2(\text{SO}_4)_3$ was selected to dissolve.

Captures on Gd

- 0.1% Gd (0.2% in $\text{Gd}_2(\text{SO}_4)_3$) gives $\sim 90\%$ efficiency for n capture

In Super-K this requires dissolving ~ 100 tons of $\text{Gd}_2(\text{SO}_4)_3$
Hiroyuki Sekiya

Expected signal with SK-Gd 10 years

SRN flux from Horiuchi et al.

Assumption
• n capture efficiency: 90%
• Gd γ detection efficiency: 74%.
• 35% of the SK-IV invisible muon BG
 ◦ By n-tagging

Min/nominal/Max are due to uncertainties in astronomy.

Expect number of events in 10 years
in $E_{\text{total}} = 10$-30 MeV
 • Teff 6MeV case: 26-34 events
 • Teff 4MeV case: 13-16 events

Background: ~18 events

Aiming at “discovery” of SRN
EGADS
Evaluating Gadolinium’s Action on Detector Systems
- To study the Gd water quality with actual detector materials.
- The detector fully mimic Super-K detector.
 : SUS frame, PMT and PMT case, black sheets, etc.

Gd water circulation system (purify water with keeping Gd)

200 m³ tank with 240 PMTs

15m³ tank to dissolve Gd

2014
Water transparency during adding Gd

- Gd had been dissolved from Nov. 2014 to May. 2015

Cherenkov light left at 15 m for EGADS detector

Blue band: SK-III and SK-IV values.

Sampling position:
- Bottom
- Centre
- Top
- 0.02% Gd$_2$(SO$_4$)$_3$
- 0.10% Gd$_2$(SO$_4$)$_3$
- 0.15% Gd$_2$(SO$_4$)$_3$
- 0.20% Gd$_2$(SO$_4$)$_3$
The light left at 15 m in the 200m³ tank was very stable and ~75% for 0.2% Gd₂(SO₄)₃, which corresponds to ~92% of SK-IV pure water average.
Neutron capture signal in EGADS

- Using Am/Be + BGO

Gd concentration dependence was confirmed.

<table>
<thead>
<tr>
<th>Gd Concentration</th>
<th>Data</th>
<th>MC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2178±76ppm</td>
<td>1055±37ppm</td>
<td>225±8ppm</td>
</tr>
<tr>
<td>Data</td>
<td>29.89±0.33</td>
<td>51.48±0.52</td>
</tr>
<tr>
<td>MC</td>
<td>30.05±1.14</td>
<td>53.47±1.77</td>
</tr>
</tbody>
</table>
Official statement from SK collaboration

On June 27, 2015, the Super-Kamiokande collaboration approved the SuperK-Gd project which will enhance anti-neutrino detectability by dissolving gadolinium to the Super-K water. The actual schedule of the project including refurbishment of the tank and Gd-loading time will be determined soon taking into account the T2K schedule.
Summary

Solar ν observation

- SK has observed ~ 77000 8B ν interactions over 18 years, by far the largest sample of solar neutrino events in the world.
 - No correlation with the solar activity cycle.
- SK recoil electron energy spectrum slightly disfavors “MSW upturn”
- SK data provide the first indication (at 2.8~3.0 σ) of terrestrial matter effects on 8B solar ν oscillation.

For DSNB detection

- Gd project in SK (was known as GADZOOKS!) started in 2002.
- EGADS started in 2009 to evaluate Gd effect to SK.
- In 2015, 0.2% of Gd sulfate was dissolved in EGADS and it was confirmed that there is no showstopper for putting Gd into SK. SK-Gd was accepted by Super-K in June 2015.

Stay tuned for low energy SK neutrino
Extra Slides
History of Gd project in Super-K

2002 Nov. Started to discuss as “GADZOOKS!”

2006 May. Gd Advisory Committee was formed.

List up R&D items and specifications

2007 Nov. collaboration council

It was suggested to make a test tank and study feasibility.

2009 “EGADS” was started.

A 200 ton test tank was constructed.

2013 0.2% Gd$_2$(SO$_4$)$_3$ was dissolved before mounting PMTs and transparency was measured.

2013 summer 240 PMTs were mounted in the EGADS tank.

2014 Oct. – 2015 May Dissolved 0.2% Gd$_2$(SO$_4$)$_3$ again and checked water transparency.

2015 Jun. collaboration council

GADZOOKS! was approved as “Super Kamiokande Gd”
Timeline of SK-Gd

<table>
<thead>
<tr>
<th>201X</th>
<th>201X</th>
<th>201X</th>
<th>20XX</th>
<th>20XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₀ = Start leak stop work (~3.5)
Fill water (~2)
Pure water circulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T₁ = Load first Gd₂(SO₄)₃ 1t = 0.002% (~1)
Load Gd₂(SO₄)₃ 10t (~1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T₂ = Load full Gd₂(SO₄)₃ 100t = 0.2% (~2)
Observation
Stabilize water transparency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- In order to set T₀, T₁, & T₂, T2K schedule will be also taken into account.

Numbers in parentheses are months to be taken for the work.
Why Gd (not 2.2MeV γ) for neutron tagging

Vertex reconstruction is possible.

Efficiency and fake probability

2.2MeV γ: Efficiency: $10 \sim 20\%$, fake probability: $\sim 10^{-2}$

Gd(n,γ)Gd: Efficiency: $>80\%$, fake probability: $<10^{-4}$
Improvement for Proton decay

Neutron multiplicity for $P \rightarrow e^+\pi^-\nu^0$ MC

Atmospheric ν BG

Accompany many n

If one proton decay event is observed at Super-K after 10 years
Current background level: 0.58 events/10 years
Background with neutron anti-tag: 0.098 events/10 years

Background probability will be decreased from 44% (w/o n) to 9% (w/ n).
Improvement for T2K

Number of tagged neutrons in T2K energy range

Atmospheric neutrino
1-ring e-like sample
0.5 GeV < E_ν < 0.7 GeV

Assuming n-tag efficiency of 80%.
(capture eff.=90%, Gd-γ det.eff.=~90%)

Using n-tagging information, $\bar{\nu}_e$ ID (ν_e missID) eff. ~70%(30%)
$\bar{\nu}_e$ enhanced sample in anti mode appearance analysis

Signal $\bar{\nu}_e$, Signal ν_e

$\bar{\nu}_e$, ν_e, ν_μ and $\bar{\nu}_\mu$

<table>
<thead>
<tr>
<th>Erec [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of events @ 3.9×10^{21} POT</td>
</tr>
</tbody>
</table>

Osc parameters: $\sin^2 \theta_{13} = 0.1$, $\delta_{CP} = -90^\circ$, $\Delta m^2 = 0.0024 \text{eV}^2$, $\sin^2 \theta_{23} = 0.5$, NH

$\bar{\nu}_e$ ID (ν_e missID) eff. = 70% (30%) is assumed w/o energy dependence

Note: Directional information of $e/e+$ is not used
Anti mode 3.9×10^{21} Appearance Contour

True parameters: $\sin^2 2\theta_{13} = 0.1, \delta_{CP} = -90^\circ$

$\Delta m_{32}^2 = 0.0024\text{eV}^2$ (Fixed), $\sin^2 \theta_{23} = 0.5$ (Fixed), NH (Fixed)
e/π

0 separation

\[\text{e MC} \quad \text{(ex. 500MeV/c)} \]

\[\text{π}^0 \text{MC} \]

<table>
<thead>
<tr>
<th>pure</th>
<th>Gd water</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>92.9±2.1</td>
</tr>
<tr>
<td>500</td>
<td>89.3±2.0</td>
</tr>
<tr>
<td>1000</td>
<td>75.7±1.8</td>
</tr>
</tbody>
</table>

True (MeV/c)

π

0 mass

\[\text{π}^0 \text{MC, remain } \varepsilon \text{ (\%)} \]

<table>
<thead>
<tr>
<th>true (MeV/c)</th>
<th>pure</th>
<th>Gd water</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>1.7±0.2</td>
<td>1.9±0.2</td>
</tr>
<tr>
<td>500</td>
<td>4.7±0.3</td>
<td>6.1±0.4</td>
</tr>
<tr>
<td>1000</td>
<td>15.8±0.7</td>
<td>16.7±0.7</td>
</tr>
</tbody>
</table>

e MC, det.

\[\text{fiTQun } L_{\pi^0/Le} \]

\[\text{fiTQun } \pi^0 \text{ mass (MeV/c^2)} \]
Improvements in SK-IV

- Reduced 222Rn BG
- New analysis in low energy bins
 Remaining BG-electrons from 214Bi should have more multiple-scatterings than signal-electrons have: MSG
 \[\text{MSG < 0.35} \quad \text{0.35 < MSG < 0.45} \quad \text{0.45 < MSG}\]

- Reduced systematic error
 1.7% for flux cf. SK-I: 3.2% SK-III: 2.1%

Achieved 3.5 MeV(kin.) energy threshold
8.6σ signal is observed with MSG
Recoil electron spectra

SK-I Energy Spectrum

SK-II Energy Spectrum

SK-III Energy Spectrum

SK-IV Energy Spectrum

MC: 5.25×10^6/cm2/sec

Preliminary

SK-IV

1669 days

Hiroyuki Sekiya

TAUP2015 Torino

September 7 2015
SK-I+II+III+IV spectrum

N.B. All SK phase are combined without regard to energy resolution or systematics in this figure.

Neutrino energy spectrum is convoluted in the electron recoil spectrum. For de-convolution, generic functions are used as a survival probability:

$$P_{ee}(E_{\nu}) = c_0 + c_1 \left(\frac{E_{\nu}}{MeV} - 10 \right) + c_2 \left(\frac{E_{\nu}}{MeV} - 10 \right)^2$$

$$P_{ee}(E_{\nu}) = e_0 + \frac{e_1}{e_2} \exp \left(e_2 \left(\frac{E_{\nu}}{MeV} - 10 \right) - 1 \right)$$

SK recoil electron spectrum constrain the fit parameters (c_i, e_i) of the function and the allowed $P_{ee}(E_{\nu})$ is derived using the allowed (c_i, e_i).

<table>
<thead>
<tr>
<th>(total # of bins of SKI - IV is 83)</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar+KamLAND</td>
<td>70.13</td>
</tr>
<tr>
<td>Solar</td>
<td>68.14</td>
</tr>
<tr>
<td>quadratic fit</td>
<td>67.67</td>
</tr>
<tr>
<td>exponential fit</td>
<td>66.54</td>
</tr>
</tbody>
</table>
Allowed $P_{ee}(E_\nu)$ for SK

$P_{ee}(E_\nu) = c_0 + c_1 \left(\frac{E_\nu}{\text{MeV}} - 10 \right) + c_2 \left(\frac{E_\nu}{\text{MeV}} - 10 \right)^2$

- MSW (solar+KamLAND) is consistent at ~1.6σ
- MSW (solar) fits better (at ~0.7σ)

- Solar+KamLAND:
 - $\sin^2\theta_{12}=0.308$
 - $\Delta m^2_{21}=7.50\times10^{-5}\text{eV}^2$

- Solar:
 - $\sin^2\theta_{12}=0.311$
 - $\Delta m^2_{21}=4.85\times10^{-5}\text{eV}^2$

$\sqrt{\text{MSW (solar+KamLAND)}}$ is consistent at ~1.6σ
$\sqrt{\text{MSW (solar)}}$ fits better (at ~0.7σ)
Allowed $P_{ee}(E_{\nu})$ for SK+SNO

\[P_{ee}(E_{\nu}) = c_0 + c_1 \left(\frac{E_{\nu}}{\text{MeV}} - 10 \right) + c_2 \left(\frac{E_{\nu}}{\text{MeV}} - 10 \right)^2 \]

- SK and SNO are complementary for the shape constraint
- MSW is consistent at 1\(\sigma\)

Solar+KamLAND
- \(\sin^2 \theta_{12} = 0.308\)
- \(\Delta m^2_{21} = 7.50 \times 10^{-5} \text{eV}^2\)

SK
- \(\sin^2 \theta_{12} = 0.311\)
- \(\Delta m^2_{21} = 4.85 \times 10^{-5} \text{eV}^2\)

SNO
- √SK and SNO are complementary for the shape constraint
- √MSW is consistent at 1\(\sigma\)
Global view of $P_{ee}(E_{\nu})$

![Graph showing the global view of $P_{ee}(E_{\nu})$ with data points from various sources including all solar (pp), Borexino (pep), Borexino (7Be), Homestake + SK+SNO (CNO), and SK+SNO.]
Δm_{21}^2 dependence

Solar region
differ from zero
by 2.9~3.0σ
agree with expect
by 1.0σ

KamLAND region
differ from zero
by more than 2.8σ
agree with expect
by 1.3σ

$\sin^2 \theta_{12} = 0.311, \sin^2 \theta_{13} = 0.025$
History of lowered BG and threshold

- Solar angle distributions
 - BG SK-I/SK-IV = 1/4, E_{th} SK-I – SK-IV = 1MeV

4.5MeV-5.0MeV bin

3.5MeV-4.0MeV bin

SK-I
SK-III
SK-IV
SK-IV
How it was achieved?

- It’s easy! Just tightening the FV to reject Rn rich region.

- Keeping the FV (boarder) is not easy at all!

Event rates

- SK IV
- SK III

Vertex distributions

- SK-IV vertex distributions

Graphs

- 3.5 - 4.0 MeV
- 4.0 - 4.5 MeV
- 4.5 - 5.0 MeV
Convection suppression in SK-IV

- Very precisely temperature-controlled (±0.01°C) water must be supplied to the bottom.

3.5MeV-4.5MeV Event distribution

Temperature in Z direction
The difference is only 0.2 °C
Wide-band Intelligent Trigger

- Reconstruction and Reduction just after Front-end

100% trigger efficiency above 2.5MeV(kin.)

Just started
Oscillation parameter

SK and SNO

\[
\sin^2(\theta_{12}) = 0.317^{+0.017}_{-0.027}, \\
m^2_{21} = (5.4^{+1.7}_{-1.3}) \times 10^{-5} \text{eV}^2
\]

\[
\sin^2(\theta_{12}) = 0.339^{+0.027}_{-0.024}, \\
m^2_{21} = (4.74^{+1.96}_{-0.79}) \times 10^{-5} \text{eV}^2
\]

\[
\sin^2(\theta_{12}) = 0.313 \pm 0.014, \\
m^2_{21} = (4.86^{+1.10}_{-0.42}) \times 10^{-5} \text{eV}^2
\]

Spectral distortion expected

Day/night asymmetry expected
Probing the Unknown

Non-standard physics effects can alter the shape / position of the “MSW rise”

Non-standard interactions (flavour changing NC)

Sterile Neutrinos

Mass varying neutrinos (MaVaNs)

Holanda & Smirnov PRD 83 (2011) 113011

M.C. Gonzalez-Garcia, M. Maltoni
SK+SNO 8B total flux

- For each oscillation parameter set there is a minimum chi2 and a 8B error term describing the parabolic increase of the chi2 with deviations from the best chi2. The reduced chi2 vs. 8B flux is below. The jump is due to the relatively coarse grid in theta12.

- $5.30 \pm 0.17 - 0.11 \times 10^6/(\text{cm}^2 \text{ sec})$, which is a (+3%,-2%) error on the total 8B for SK+SNO compared to the 1.5% error of SK’s ES flux by itself.
Systematic errors

<table>
<thead>
<tr>
<th>Source</th>
<th>SK-IV flux (3.5-19.5MeV)</th>
<th>SK-III flux (4.5-19.5MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>energy scale</td>
<td>+1.14, -1.16%</td>
<td>± 1.4%</td>
</tr>
<tr>
<td>energy resolution</td>
<td>+0.14, -0.08%</td>
<td>± 0.2%</td>
</tr>
<tr>
<td>B8 spectrum</td>
<td>+0.33, -0.37%</td>
<td>± 0.2%</td>
</tr>
<tr>
<td>trigger efficiency</td>
<td>± 0.1%</td>
<td>± 0.5%</td>
</tr>
<tr>
<td>angular resolution</td>
<td>+0.32, -0.25%</td>
<td>± 0.67%</td>
</tr>
<tr>
<td>vertex shift</td>
<td>± 0.18%</td>
<td>± 0.54%</td>
</tr>
<tr>
<td>BG event cut</td>
<td>± 0.36%</td>
<td>± 0.4%</td>
</tr>
<tr>
<td>hit pattern cut</td>
<td>± 0.27%</td>
<td>± 0.25%</td>
</tr>
<tr>
<td>another vertex cut</td>
<td>removed</td>
<td>± 0.45%</td>
</tr>
<tr>
<td>spallation cut</td>
<td>± 0.2%</td>
<td>± 0.2%</td>
</tr>
<tr>
<td>gamma cut</td>
<td>± 0.26%</td>
<td>± 0.25%</td>
</tr>
<tr>
<td>cluster hit cut</td>
<td>+0.45, -0.44%</td>
<td>± 0.5%</td>
</tr>
<tr>
<td>BG shape</td>
<td>± 0.1%</td>
<td>± 0.1%</td>
</tr>
<tr>
<td>signal extraction</td>
<td>± 0.7%</td>
<td>± 0.7%</td>
</tr>
<tr>
<td>cross section</td>
<td>± 0.5%</td>
<td>± 0.5%</td>
</tr>
</tbody>
</table>

- **Total 1.7%**
Data set for global solar analysis

The most up-to-date data are used

- **SK:**
 - SK-I 1496 days, spectrum 4.5-19.5 MeV(kin.)+D/N: Ekin>4.5 MeV
 - SK-II 791 days, spectrum 6.5-19.5 MeV(kin.)+D/N: Ekin>7.0 MeV
 - SK-III 548 days, spectrum 4.0-19.5 MeV(kin.)+D/N: Ekin>4.5 MeV
 - SK-IV 1669 days, spectrum 3.5-19.5 MeV(kin.)+D/N: Ekin>4.5 MeV

- **SNO:**
 - Parameterized analysis (c0, c1, c2, a0, a1) of all SNO phased. (PRC88, 025501 (2013))
 - Same method is applied to both SK and SNO with a0 and a1 to LMA expectation

- **Radiochemical:** Cl, Ga

- **Borexino:** Latest 7Be flux (PRL 107, 141302 (2011)) Does NOT include Borexino pp 2014
- **KamLAND reactor:** Latest (3-flavor) analysis (PRD88, 3, 033001 (2013))
- **8B spectrum:** Winter 2006 (PRC73, 73, 025503 (2006))
- **8B and hep flux**
 \[
 \phi_8 = 5.25 \times 10^9/(cm^2\cdot sec) \\
 \phi_{hep} = 7.88 \times 10^3/(cm^2\cdot sec)
 \]
Day/Night

<table>
<thead>
<tr>
<th></th>
<th>Amplitude fit</th>
<th>Straight calc. (D-N)/((D+N)/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\Delta m_{21}^{2}=4.84\times10^{-5},\text{eV}^2$</td>
<td>$\Delta m_{21}^{2}=7.50\times10^{-5},\text{eV}^2$</td>
</tr>
<tr>
<td>SK-I</td>
<td>$-2.0\pm1.8\pm1.0%$</td>
<td>$-1.9\pm1.7\pm1.0%$</td>
</tr>
<tr>
<td>SK-II</td>
<td>$-4.4\pm3.8\pm1.0%$</td>
<td>$-4.4\pm3.6\pm1.0%$</td>
</tr>
<tr>
<td>SK-III</td>
<td>$-4.2\pm2.7\pm0.7%$</td>
<td>$-3.8\pm2.6\pm0.7%$</td>
</tr>
<tr>
<td>SK-IV</td>
<td>$-3.6\pm1.6\pm0.6%$</td>
<td>$-3.3\pm1.5\pm0.6%$</td>
</tr>
<tr>
<td>combined</td>
<td>$-3.3\pm1.0\pm0.5%$</td>
<td>$-3.1\pm1.0\pm0.5%$</td>
</tr>
</tbody>
</table>

non-zero significance: 3.0σ, 2.8σ, 2.8σ

expected time variation as a function of $\cos\theta_z$

\[L = e^{\sum B_i S_i} \prod_{i=1}^{N_{str}} \prod_{v=1}^{N_{run}} (\beta_i (c_v) B_i + \sigma_i (c_v) \times z_i (t_v) m_i S_i) \]

\[z_i (t_v) = z_i (\alpha, t) = \frac{1 + \alpha ((1 + a_i) r_i (t) / r_i^{av} - 1) \times z_{\exp} (t)}{1 + \alpha a_i} \]

α : day-night asym. scaling factor

(sin$^2\theta_{12}=0.311$, sin$^2\theta_{13}=0.025$)
exponential parameterization

\[P_{ee}(E_\nu) = e_0 + \frac{e_1}{e_2} \left(\exp \left(e_2 \left(\frac{E_\nu}{MeV} - 10 \right) \right) - 1 \right) \]

Solar+KamLAND
- \(\sin^2 \theta_{12} = 0.308 \)
- \(\Delta m^2_{21} = 7.50 \times 10^{-5} eV^2 \)

Solar
- \(\sin^2 \theta_{12} = 0.311 \)
- \(\Delta m^2_{21} = 4.85 \times 10^{-5} eV^2 \)

\(\sqrt{SK} \) spectrum, red: exponential, green: quadratic

-preliminary-
Comparison with others

Comparison of 8B Elastic Scattering Data

- BOREXINO
- SNO
- KamLAND
- Super-K

Super-K spectrum is the most precise!