Antineutrino studies with Borexino detector

Oleg Smirnov, JINR, Dubna
on behalf of Borexino collaboration
the Borexino Collaboration
BOREXINO started data taking in 2007

- 278 t of liquid organic scintillator PC + PPO (1.5 g/l)
- (ν, e)-scattering with 200 keV threshold
- Outer muon detector

Borexino Design

- Stainless Steel Sphere 13.7m Ø
- Nylon Sphere 8.5m Ø
- 2200 6" Thorn EMI PMTs (1800 with light collectors 400 without light cones)
- Muon veto: 200 outward-pointing PMTs
- 100 ton fiducial volume
- Nylon film Rn barrier
- Scintillator
- Pseudocumene buffer
- Water buffer
- Holding strings
- Stainless Steel Water Tank 18m Ø
- Steel Shielding Plates 8m x 8m x 10cm and 4m x 4m x 4cm
Geoneutrino detection

- **geoneutrino** - antineutrino from β- decays of long lived isotopes (U-238, Th-232, K-40), naturally present in the mantle and the crust of the Earth. Expected flux at the surface $\sim 10^6$ s$^{-1}$sm$^{-2}$.

- Full thermal flux from the Earth is 30-45 TW (measurements), it is believed that the main contribution to the thermal flux provide radioactive decays.

- Radiogenic heat is related to the antineutrino flux. Standard models (based on the meteorites composition and the measurements of the crust composition) predict radiogenic contribution to the total thermal flux of the Earth of about 19 TW.

- Some “unusual” models are being developed, i.e. models with georeactor at the center of the Earth (J.M. Herndon) as the energy source (3-6 TW) for the geomagnetic field.

Natural radioactivity of the Earth: Open questions

Expected signal shape

Radiogenic contribution to total heat flow?

U/Th concentration in the crust?

U/Th amount in the mantle?

What is in the core (georeactor, 40K)?

Is standard geochemical model (BSE) compatible with geoneutrino measurements?
Two detectors sensitive to geo-neutrino

Large volume LS underground detectors

Borexino: 300 t LS (3500 mwe)

KamLAND: 1 kton LS (2700 mwe)
Data selection for antineutrino analysis

• ~2 years (Dec 2007-Dec 2009), 537.2 days of live time in total. Full exposition is 252.6 t·yr taking into account detection efficiency
• Antineutrino are detected using delayed coincidence tag from the inverse beta-decay on proton (~256 µs)

\[\bar{\nu}_e + p \rightarrow e^+ + n \]
\[\downarrow \approx 250 \mu s \]
\[n + p \rightarrow d + \gamma (2.2 \text{MeV}) \]

Cuts:
1) $Q_{\text{prompt}}>410 \text{ p.e.}$
2) $700 < Q_{\text{delayed}} < 1250 \text{ p.e.}$
3) $\Delta R<1 \text{ m;}$
4) $20 < \Delta t<1280 \mu s,$
5) $R_{\text{IV}}(\Theta,\phi) - R_{\text{prompt}}(\Theta,\phi)>0.25 \text{ m}$
6) $T_\mu>2 \text{ s}$ (every muon passing through internal detector: ~10% of live time loss)+ $T_\mu>2 \text{ ms}$

• ~500 p.e./MeV for electrons
• 438 p.e./2 x 511 keV γ’s

• $\varepsilon(1-4)=0.85 \ 0.01 \ (\text{MC})$

Note: actually we have doubled the statistics. Analysis in progress.
Selected antineutrino spectrum
(21 events)

\[Q_{\text{vis}} = 438 \text{p.e.}(2\gamma) + Q(E^{-}_\nu - 1.8\text{MeV}) \]

\sim 500 \text{p.e./MeV}
Principal backgrounds for geoneutrino studies

1) Reactor antineutrinos (81% of the total antineutrino signal in KamLAND geo-nu window [0.9-2.6 MeV] and only ~36% for the Borexino case): Geo/Reactor ratio 0.23 in KL vs 1.8 in Borexino;

2) Cosmic muons induced backgrounds, including cosmogenic production of (βn)-decaying isotopes (at LNGS the muons flux is of about factor 7 lower than at the Kamioka site);

3) Internal radioactive contamination: accidental coincidences, (αn) reactions (Borexino typical contaminations 3-4 orders of magnitude lower; KamLAND is trying to purify the LS – factor 20 on (αn) is achieved);
Reactor antineutrino in Borexino

\[\Phi(E_{\bar{\nu}_e}) = \sum_{r=1}^{N_{\text{react}}} \sum_{m=1}^{N_{\text{month}}} \frac{T_m}{4\pi L_r^2} P_{rm} \times \]

\[\times \sum_{i=1}^{4} \frac{f_i}{E_i} \phi_i(E_{\bar{\nu}_e}) P_{ee}(E_{\bar{\nu}_e}; \hat{\theta}, L_r) \]

<table>
<thead>
<tr>
<th>Source</th>
<th>Error [%]</th>
<th>Source</th>
<th>Error [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel composition</td>
<td>3.2</td>
<td>(\theta_{12})</td>
<td>2.6</td>
</tr>
<tr>
<td>(\phi(E_{\bar{\nu}}))</td>
<td>2.5</td>
<td>(P_{rm})</td>
<td>2.0</td>
</tr>
<tr>
<td>Long-lived isotopes</td>
<td>1.0</td>
<td>(E_i)</td>
<td>0.6</td>
</tr>
<tr>
<td>(\sigma_{\bar{\nu}p})</td>
<td>0.4</td>
<td>(L_r)</td>
<td>0.4</td>
</tr>
<tr>
<td>(\Delta m_{12}^2)</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>5.38</td>
</tr>
</tbody>
</table>

194 (Europe) +245 (in the rest of the world, 2.5% contribution)

13 Power plants gives 40% of full signal.

3 most powerful plants in France give 13% of full signal.
Summary of backgrounds

<table>
<thead>
<tr>
<th>Source</th>
<th>Borexino [events/(kton-year)]</th>
<th>KamLAND [1/(kton yr)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosmogenic 9Li and 8He</td>
<td>0.3 ± 0.2</td>
<td>0.48 ± 0.025 (9Li)</td>
</tr>
<tr>
<td>Fast neutrons from μ in Water Tank</td>
<td>< 0.1 (measured)</td>
<td>< 0.7</td>
</tr>
<tr>
<td>Fast neutrons from μ in rock</td>
<td>< 0.4 (MC)</td>
<td></td>
</tr>
<tr>
<td>Non-identified muons</td>
<td>0.11 ± 0.01</td>
<td></td>
</tr>
<tr>
<td>Accidental coincidences</td>
<td>0.80 ± 0.01</td>
<td>18.76 ± 0.025</td>
</tr>
<tr>
<td>Time correlated background</td>
<td>< 0.26</td>
<td></td>
</tr>
<tr>
<td>(γ,n) reactions</td>
<td>< 0.003</td>
<td></td>
</tr>
<tr>
<td>Spontaneous fission in PMTs</td>
<td>0.030 ± 0.003</td>
<td></td>
</tr>
<tr>
<td>(α,n) reactions in the scintillator 210Po</td>
<td>0.14 ± 0.01</td>
<td>40.1 ± 4.4</td>
</tr>
<tr>
<td>(α,n) reactions in the buffer 210Po</td>
<td>< 0.61</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>1.4 ± 0.2</td>
<td></td>
</tr>
<tr>
<td>SIGNAL (measured)</td>
<td>39^{+16}_{-13} (with 0.2526 kt yr)</td>
<td>$25.7^{+7.0}_{-6.8}$ (with 4.126 kt yr)</td>
</tr>
</tbody>
</table>
Expected geoneutrino+reactor antineutrino spectrum

How geoneutrino/reactors spectra are calculated

- Cross section
- Oscillations

MC: Measured units (p.e.)
Detector resp. simulation
Used in analysis
The presence of the geoneutrino signal is confirmed at 99.997% C.L.

Borexino result vs models

The best fit is within 1σ from the BSE (Bulk Silicate Earth) model prediction, the central value close to the fully radiogenic model;

Fully radiogenic model: a model with fully radiogenic heat production; K/U fixed at the terrestrial value and Th/U at the chondritic value (consistent with terrestrial). Abundances are rescaled to provide the full 40 TW heat flow.
Unconstrained U/Th analysis

$\text{Borexino measurement} \quad 1, 2 \text{ and } 3 \sigma \text{ contours}$

BSE model

$\frac{\text{Th}}{\text{U}}=3.9 \text{ (chondritic ratio)}$

$1 \ TNU = \text{Terrestrial Neutrino Units}: \text{one event per } 10^{32} \text{ protons per year.}$
Combined Borexino+KL analysis

E.Lisi, Rotunno & Palazzo, hep-ph/1006.1113

- KL and BX data offer the first opportunity to combine geoneutrino results at different sites. Hints about Th/U, heat, mantle contrib.
- Any combination requires some model-dependent assumptions.
- Zero U and Th are excluded at 1σ level using combined Borexino/KL data even if no assumptions are applied
Non-oscillation scenario for reactor antineutrino at 1000 km is excluded at 99.60% C.L.

\[\Delta m^2_{12} = 7.65 \cdot 10^{-5} \text{eV}^2 \]
\[\sin^2 \theta_{12} = 0.304 \]

\[P_{ee}(E_{\nu}, L) \approx 1 - \sin^2(2 \theta_{12}) \sin^2 \left(\frac{1.27 \Delta m^2_{12} [eV^2] L [m]}{E_{\nu}} \right) \]
Is there a georeactor at the center of the Earth?

Assuming an anti-neutrino spectrum with power fractions of the fuel components as $^{235}\text{U} : ^{238}\text{U} = 0.75 : 0.25$ Borexino set an upper bound for a geo-reactor:

$$P_{\text{geo}} < 3 \text{ TW at 95\% C.L.}$$

by comparing the number of expected (from reactors + geo-reactor and background) and measured events in the reactor-antineutrino energy window.

- **KamLAND provided a limit** (Nature Geoscience 4, 647–651, 2011)
 $$P_{\text{geo}} < 5.2 \text{ TW at 90\% C.L.}$$
- **E.Lisi et al.** (hep-ph/1006.1113) performed an independent test and found at 95\% C.L.:
 - BX: $P_{\text{geo}} < 4.1 \text{ TW}$
 - KL: $P_{\text{geo}} < 6.7 \text{ TW}$
 - BX+KL: $P_{\text{geo}} < 3.9 \text{ TW}$
Electron neutrino with magnetic moment can be converted to antineutrino

From the Standard Model point of view, there is no diagonal magnetic moment for Dirac massless neutrino, as well as for Majorana neutrino, massive or massless. Massive Dirac neutrino should have small m.m.:

\[\mu_v \approx 3.2 \times 10^{-19} \left(\frac{m_v}{1\text{eV}} \right) \mu_B \]

m.m. can be searched for by studying the deviations from the weak shape in electron scattering spectrum

"flat"
\[\left(\frac{d\sigma}{dT} \right)_W = \frac{2G_F^2 m_e}{\pi} \left[g_L^2 + g_R^2 \left(1 - \frac{T}{E_v} \right)^2 - g_L g_R \frac{m_e T}{E_v^2} \right] \]

1/T behaviour

\[\left(\frac{d\sigma}{dT} \right)_{EM} = \mu_v^2 \frac{\pi \alpha_{em}^2}{m_e^2} \left(\frac{1}{T} - \frac{1}{E_v} \right) \]
Limit on effective solar neutrino magnetic moment with Borexino

- with 192 days of live-time statistics the 90% c.l. limit is:
 \[\mu_{\text{eff}} < 5.4 \cdot 10^{-11} \mu_B \]
- The limit is model-independent, defined only by the shape of the spectra, also no systematics is attributed to the uncertainty of the FV.
- The best up-to-date existing limit comes from the measurements with high purity 1.5 kg Ge detector at Kalinin Nuclear Power Plant, GEMMA experiment (arXiv:0906.1926):
 \[\mu < 3.2 \cdot 10^{-11} \mu_B \]
- For flavour components one can write [D. Montanino et al. PRD 77, 093011 (2008)]:
 \[
 (\mu_{\text{eff}}^2)_{\text{MSW}} = P_{ee} \mu_e^2 + (1 - P_{ee}) (\cos^2 \theta_{23} \mu_\mu^2 + \sin^2 \theta_{23} \mu_\tau^2)
 \]
 where \(P_{ee} = 0.56 \) is the survival probability at Earth for electron neutrino at \(E = 0.862 \) MeV, \(\sin^2 \theta_{23} = 0.5^{+0.07}_{-0.06} \).

Applying constraints on \(\mu_{ve} \) of Gemma experiment:

\[\mu_\mu < 12 \cdot 10^{-11} \mu_B \]
\[\mu_\tau < 12.5 \cdot 10^{-11} \mu_B \]

Present limits on the neutrino magnetic moments are:
- \(\mu_e < 3.2 \times 10^{-11} \mu_B \) by GEMMA (elastic scattering)
- \(\mu_\mu < 68 \times 10^{-11} \mu_B \) by LSND (elastic scattering)
- \(\mu_\tau < 39000 \times 10^{-11} \mu_B \) by DONUT (elastic scattering)
Are there any electron antineutrinos from the Sun?

Energy spectra for electron anti-neutrinos in Borexino: geo- (black) and reactor (blue) normalized to the Borexino measured values for a 252.6 ton year exposure. The spectral shape for hypothetical 8B solar anti-neutrinos (red) is normalized to upper limit

$$p(\nu \rightarrow \bar{\nu}) < 1.3 \times 10^{-4} \phi_{SSM}(^8B) \ 90\% \ \text{C.L.}$$

The limit for 8B shaped antineutrino spectrum ($\phi<760 \ \text{cm}^{-2}\text{s}^{-1}$ at 90% C.L.) was obtained combining data sets below/above 7.3 MeV (no events above a priori chosen threshold of 7.3 MeV during longer time of 736 days against 482 days for the geo-neutrino analysis). Fit procedure developed for the geo-neutrino studies was used with 8B neutrino spectrum weighted for effective exposures below and above 7.3 MeV.

$$\mu_{\nu} \leq 7.4 \times 10^{-7} \left(\frac{p_{\nu \rightarrow \bar{\nu}}}{\sin^2 2\Theta_{12}} \right)^{1/2} \frac{\mu_B}{B_\perp [kG]}$$

$$\mu_{\nu} \leq 9 \times 10^{-9} \frac{\mu_B}{B_\perp (R = 0.05R_{sol})[kG]}$$

“Study of solar and other unknown anti-neutrino fluxes with Borexino at LNGS”
Are there other unknown sources of electron antineutrinos?

Upper limits on unknown antineutrino fluxes:
1 – Borexino
2 – SuperKamiokande
3 – SNO

Minimal radiogenic model has been used to set the upper limits.

Limits has been set using Feldman–Cousins approach (estimating how much additional antineutrinos can be statistically fit in every energy bin given measured and theoretically expected).

Above 7-th bin (E > 7.8 MeV) Slim = 2.44 (Feldman–Cousins recipe for no observed events with zero background)

“Study of solar and other unknown anti-neutrino fluxes with Borexino at LNGS”
Search for electron antineutrinos with 7Be energy

Below 1.8 MeV no inverse beta on $p \rightarrow$ elastic scattering on electrons only. The recoil spectra for electrons elastically scattering off neutrino and antineutrinos are distinct.

Following the changes in the χ^2 profile with respect to the addition of an anti-neutrino component ($\phi \rightarrow (1-p)\phi_{7\text{Be}} + p\phi_{7\text{Be}}$) we set a limit on the conversion probability for 7Be solar neutrinos of:

$$p(\nu \rightarrow \bar{\nu}) < 0.35\phi(^7\text{Be}) \quad 90\% \quad \text{C.L.}$$
Summary of antineutrino measurements with Borexino

• 1) Geoneutrino existence is confirmed by Borexino at 4.2σ (99.997%);

• 2) The precision of Borexino measurement is still too low: ~40% for U+Th signal, and much worse for the unconstrained R(U) and R(Th) measurements. Different geological models for the moment can’t be discriminated by existing measurements, more precise measurements are needed;

• 3) Limit of $P_{\text{geo}}<3$ TW at 95% C.L. is set for georeactor;

• 4) Conversion probability into antineutrino for 8B solar neutrinos is limited $p(\nu \rightarrow \nu)<1.3 \times 10^{-4} \varphi_{\text{SSM}(^8B)}$ 90% C.L., limit for 7Be is much weaker $p(\nu \rightarrow \nu)<0.35 \varphi(\ ^7\text{Be})$ 90% C.L.,

• 5) New model-independent limits on the antineutrino fluxes are established starting from inverse beta-decay threshold