When LHC/TEVATRON combine with XENON to exclude scalar DM

Yann Mambrini, LPT Orsay, University Paris XI

YM 1108.0671; JCAP YM 1104.4799; JCAP YM 1012.0447; JCAP YM 1006.3318; JCAP

TAUP2011, 6th of September 2011
Outline

• The Scalar DM extension of the Standard Model

• Dark matter constraints

• Invisible Higgs decay and LHC/TEVATRON analysis

• Perspective and Conclusion
Extensions of the SM

• Extension of the content of the SM: v_R, SUSY

• Extension of the Gauge group, new «force»: extra $U(1)$, $SO(32)$

• Extension of the space-time structure: supergravity, KK, strings
Singlet Extension of the SM

To build the simplest gauge invariant extension of the SM

\[\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} \partial_\mu S \partial^\mu S - \frac{\lambda_S}{4} S^4 - \frac{\mu_S^2}{2} S^2 - \frac{\lambda_{HS}}{4} S \]

No phenomenology \(<S> = 0\)

\[\sigma_{S-p}^{SI} = \frac{m_p^4 \lambda_{HS}^2 (\sum q f_q)^2}{16\pi (m_p + m_S)^2 M_H^4} \]

\[\langle \sigma_{ff'} v \rangle = \frac{\lambda_{HS}^2 (m_S^2 - m_f^2)^{3/2} m_f^2}{16\pi m_S^3 [(4m_s^2 - M_H^2)^2 + M_H^2 \Gamma_H^2]} \]
Constraints in «portal like» models

Except around the pole: $2M_{\text{DM}} = M_h$: small δ to respect WMAP

\Rightarrow small $\sigma_{\text{DM-SM}}$

In this case, high indirect detection rates!!
Invisible width of the Higgs

\[\Gamma_H(S) = \frac{\lambda^2_{SS} M^2_H}{16\pi} \]

Visible decay

\[\Gamma_H(H \rightarrow SS) = \frac{\lambda^2_{SS} M^2_H}{32\pi} \]

Invisible decay

\[\Gamma_{inv} = \sigma_{SI} S^{-p} = \left(m_S + m_P \right)^2 M^2_H - 4m^2_S \]

\[\sigma_{SI} (pb) \]

WMAP + LEP + XENON100 upgrade + LHC prospect

2012

\[m_s (GeV) \]

\[m_H (GeV) \]
And if LHC sees nothing?

What if invisible is largely the dominant mode?

\[L_{0} = \frac{L_{0}}{1 - Br_{\text{inv}}} \] to be excluded/observed

Luminosity required for exclusion at 95% CL at 7 TeV [ATLAS]

\begin{align*}
 m_{S} &= 50 \text{ GeV}, \quad \lambda = 0.2 \\
 \text{SM Higgs}
\end{align*}

Strumia, Raidal

1108.4903

95% CL bound from Xenon100
Conclusion

- Scalar DM is very predictive
- The model could be excluded by the end of the year
- Complementarity with LHC is fundamental