CUORICINO: final results

Sergio Di Domizio on behalf of the CUORICINO collaboration

University and INFN - Genova

TAUP2011 – Munich – September 5, 2011
CUORICINO was a bolometric experiment for the search of neutrinoless double beta decay (DBD) in ^{130}Te

- Detector description
- Results for ^{130}Te neutrinoless DBD to the ground state
- Results for ^{130}Te DBD to the first excited state 0^+ of ^{130}Xe
- Results for β^+/EC DBD of ^{120}Te
- Study of the muon-induced background in CUORICINO
- Feasibility of WIMP and solar Axion search in CUORE-0 and CUORE
Bolometric technique

Working principle: measure the temperature rise of the energy absorber

$$\Delta T = \frac{E}{C}$$

- **Heat bath ~ 10 mK** (copper)
- **Thermal coupling** (PTFE)
- **Thermistor** (NTD-Ge)
- **Absorber Crystal** (TeO$_2$)

source ≡ detector

Typical parameters of the CUORICINO bolometers

Absorber crystal: TeO$_2$
- $M = 790$ g
- $C = 2 \times 10^{-9}$ J/K
- $\Delta T = 0.1$ mK/MeV

Sensor: NTD Ge thermistor
- $R = R_0 \exp\left(\frac{T_0}{T}\right)^{1/2}$
- $R_0 = 1 \, \Omega, \, T_0 = 3 - 4 \, K$
- $R = 100 \, M\Omega$
- $\Delta R = 3 \, M\Omega/\text{MeV}, \, \Delta V = 0.3 \, \text{mV/MeV}$
Isotope choice: ^{130}Te

- Q-value: ~ 2527.5 keV
- Isotopic abundance: 33.8%
- Favorable nuclear structure factor
- TeO_2 crystals have good thermal and mechanical properties

Q-value measurements:

- $2527.518(13)$ keV
- $2527.01(32)$ keV
- $2526.97(23)$ keV

References:

Detector

A tower of 62 TeO$_2$ crystals

- 11 floors made of 4 crystals
 - not enriched
 - Mass: 790g
 - Dimensions: 5x5x5 cm3
- 2 floors made of 9 crystals:
 - Mass: 330g
 - Dimensions: 3x3x6 cm3
 - 2 enriched in 128Te (82%)
 - 2 enriched in 130Te (75%)

Total mass: 40.7 Kg (11.3 Kg in 130Te)

Shieldings

Internal:

- 1cm low activity Pb
 - (A < 4 mBq/Kg in 210Pb)

External:

- 20cm Pb
- 20cm Borated Polyethylene
- Anti-Rn box: Nitrogen overpressure
Energy calibration

~3 days calibration performed about once per month by inserting 232Th sources between the cryostat and the external lead shields

Calibration error at 130Te $\beta\beta$ Q-value: ± 0.4 keV
Cuoricino was located underground, in the Hall A of the Laboratori Nazionali del Gran Sasso (Italy) under a 3650 m w.e. shield against cosmic rays.

Data taking started in April 2003 and ended in June 2008. The data are separated in two runs (RUN I and RUN II), due to a major maintenance interruption.

Average energy resolution (big xtals): **6.3 keV**
Evaluated on the 2615 keV peak from 208Tl.

<table>
<thead>
<tr>
<th>Crystal Type</th>
<th>$<\Delta E_{\text{FWHM}}>\ (\text{keV})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5 \times 5 \times 5 \ \text{cm}^3$</td>
<td>6.3±2.5 keV</td>
</tr>
<tr>
<td>$3 \times 3 \times 6 \ \text{cm}^3$ (natural)</td>
<td>9.9±4.2 keV</td>
</tr>
<tr>
<td>$3 \times 3 \times 6 \ \text{cm}^3$ (enriched)</td>
<td>13.9±5.3 keV</td>
</tr>
</tbody>
</table>
Bkg at Q-value: \(0.17 \text{ counts/(keV kg y)}\)

Statistics: \(19.75 \text{ kg}^{(130\text{Te})} \text{ y}\)

Maximum likelihood fit with 8 free parameters:
- \(0\nu\beta\beta\) rate
- 3 flat bkg rates (big, small and enriched xtals)
- 3 \(^{60}\text{Co}\) rates (big, small and enriched xtals)
- \(^{60}\text{Co}\) sum energy (same for all detectors)

\[
\Gamma^{0\nu} = (-0.2 \pm 1.4 \text{ (stat)} \pm 0.3 \text{ (syst)}) \times 10^{-25} \text{ y}^{-1}
\]

Half life limit: Bayesian approach with flat prior

\[
T^{0\nu}_{1/2} > 2.8 \times 10^{24} \text{ y} \quad @ \text{90\% CL}
\]

\(m_{\beta\beta}\) \< (300 – 570) meV \quad (R)QRPA
\< (360 – 580) meV \quad \text{pnQRPA}
\< (570 – 710) meV \quad \text{ISM}
\< 370 meV \quad \text{IBM-2}

The CUORICINO limit on \(m_{\beta\beta}\) is comparable with the one reported by the Heidelberg-Moscow experiment in \(^{76}\text{Ge}\), but can not exclude the claim of observation.
Background contributions at $Q_{\beta\beta}$

- 60Co from cosmogenic activation: negligible
- Multi-Compton from 208Tl (232Th cont. in cryostat shields): ~40%
- Degraded alphas from crystal surfaces: ~10%
- Degraded alphas from Cu holders surfaces: ~50%
- Muon-induced background: negligible

Surface alpha contaminations produce a continuous spectrum that extends down to the $Q_{\beta\beta}$ region

The contributions of copper and crystal contaminations can be studied by comparing the single and double hit energy spectra

Tests performed in the Hall C R&D facility showed that the alpha background can be reduced by proper cleaning procedures. The crystal surface contribution is now under control, while the copper surface contribution is still a factor of 4 above the CUORE background goal (10^{-2} counts/(keV kg y))
Decay accompanied by the emission of two γ's: 1257 keV and 536 keV

The electrons (and neutrinos, in the 2ν decay mode) share a total energy of 734 keV

Theoretical calculations:

0ν ($m_{\beta\beta} = 1$ eV): $T_{1/2}^{0\nu} = 7.5 \times 10^{25}$ y

2ν: $T_{1/2}^{2\nu} = (0.5 \div 1.4) \times 10^{23}$ y

Coincidence-based analysis

- Search for events involving two or three crystals
- Require that the photons are completely absorbed in one crystal
- Three possible scenarios:

 - Both γ's escape the decay crystal
 - The 1257 keV γ escapes. The 536 keV γ is trapped in the decay crystal
 - The 536 keV γ escapes. The 1257 keV γ is trapped in the decay crystal

Table

<table>
<thead>
<tr>
<th>Signature [keV]</th>
<th>Decay</th>
<th>Efficiency [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>734 \oplus 536 \oplus 1257</td>
<td>0ν</td>
<td>0.44 ± 0.02</td>
</tr>
<tr>
<td>1257 \oplus 1270</td>
<td>0ν</td>
<td>1.79 ± 0.04</td>
</tr>
<tr>
<td>536 \oplus 1991</td>
<td>0ν</td>
<td>1.10 ± 0.03</td>
</tr>
<tr>
<td>(0 – 734) \oplus 536 \oplus 1257</td>
<td>2ν</td>
<td>0.41 ± 0.02</td>
</tr>
<tr>
<td>(536 – 1270) \oplus 1257</td>
<td>2ν</td>
<td>2.29 ± 0.05</td>
</tr>
<tr>
<td>(1257 – 1991) \oplus 536</td>
<td>2ν</td>
<td>1.00 ± 0.03</td>
</tr>
</tbody>
</table>

Signal search is performed on the hit highlighted in red in the above table.
Excited states: 0νDBD

No evidence for a signal, background negligible

Use poisson posterior p.d.f. for zero observed events

Half life limit extracted with a Bayesian approach, assuming a flat prior

$$T_{1/2}^{0\nu} \left(^{130}Te \rightarrow ^{130}Xe^* \right) > 9.4 \times 10^{23}\, \text{y} \quad @ \, 90\% \, CL$$

Limit improved by almost two orders of magnitude with respect to previous publications

arXiv:1108.4313
Excited states: 2νDBD

Signal search performed using a ML unbinned fit

Half life limit extracted with a bayesian approach, assuming a flat prior

$$T_{1/2}^{2\nu}(^{130}Te \rightarrow ^{130}Xe^*) > 1.3 \times 10^{23} \text{ y} \quad @ \ 90\% \ CL$$

Limit improved by almost two orders of magnitude with respect to previous publications

[arXiv:1108.4313]
$^{120}\text{Te} \rightarrow^{120}\text{Sn} + e^+ (+2\nu)$

Q = (1714.8 ± 1.3) keV

Theoretical calculations:

- 0ν: not available
- 2ν: $T_{1/2}^{2\nu} = 4.4 \times 10^{26}$ y

Isotopic abundance: **0.096%**

Statistics: **0.0573 kg(^{120}Te) y

Analysis approach

In the 0ν decay mode, the energy transferred to the positron is $K_{\text{max}} = Q - 2 m_e c^2 - E_b$

If E_b is contained in the detector, the total energy release is $E_0 = K_{\text{max}} + E_b = 692.8$ keV

In the 2ν decay mode the kinetic energy of the positron has a continuous distribution between E_b and K_{max} ($E_b = 30.5$ keV if the capture proceeds through the K shell)

Coincidence-based analysis: search for events in coincidence with one or two 511 keV gammas (from positron annihilation)

<table>
<thead>
<tr>
<th></th>
<th>0ν</th>
<th>2ν</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>692.8 keV ⊕ 511 keV</td>
<td>(30.5 - 692.8) keV ⊕ 511 keV</td>
<td>3.40 ± 0.02 %</td>
</tr>
<tr>
<td></td>
<td>692.8 keV ⊕ 511 keV ⊕ 511 keV</td>
<td>(30.5 - 692.8) keV ⊕ 511 keV ⊕ 511 keV</td>
<td>0.45 ± 0.01 %</td>
</tr>
<tr>
<td></td>
<td>1203.8 keV ⊕ 511 keV</td>
<td>(541.5 - 1203.8 keV) ⊕ 511 keV</td>
<td>6.23 ± 0.03 %</td>
</tr>
</tbody>
</table>

Efficiencies evaluated using a GEANT4-based simulation
$^{120}\text{Te } \beta^+/\text{EC}: 0\nu\text{DBD}$

$0\nu: 511\text{ keV} + 1204\text{ keV}$

- DE of 2204 keV (^{214}Bi)
- SE of 1730 keV (^{214}Bi)

$0\nu: 511\text{ keV} + 511\text{ keV} + 693\text{ keV}$

- DE of 1764 keV (^{214}Bi)

Additional results:

- $T_{1/2}^{0\nu} > 1.9 \times 10^{21}$ y at 90% CL

- Limit improved by more than four orders of magnitude with respect to previous publications

\textbf{120Te β^+/EC: 2νDBD}

For the 2ν analysis consider only the signature with the best signal to background ratio:

\[(30.5 - 693)\text{ keV} \oplus 511\text{ keV} \oplus 511\text{ keV}\]

\section*{Background sources}

\textbf{Physical coincidences:} remove events within $\pm 3\sigma$ around the DE peaks from known radioactive lines:
- 1120.3 keV and 1238.1 keV of ^{214}Bi (3)
- 1173.2 keV and 1332.5 keV of ^{60}Co (2)
- 1460.8 keV of ^{40}K (1) \rightarrow \textbf{8 events left}

\textbf{Random coincidences:} estimated looking at the spectra of events in triple coincidence with the side bands of the 511 keV peak: \textbf{4.3 events}

upper limit on the number of signal counts estimated using a Bayesian approach
Assume 4 bkg events over 8 observed events:

\[n_{SIG} < 9 \text{ @ 90\% CL}\]

\[T_{1/2}^{2\nu} > 0.9 \times 10^{20} \text{ yr} \text{ @ 90\% CL}\]

Limit improved by almost three orders of magnitude with respect to previous publications

\textit{Astropart.Phys. 34 (2011) 643-648}
Muon-induced background

A test with plastic scintillators surrounding the CUORICINO detector was performed in the last 3 months of data taking of the experiment.

Study the correlations between the bolometric signals and the triggers from the plastic scintillators.

The test showed that operating the bolometers in anti-coincidence is effective at eliminating potential muon-induced backgrounds.

Before anti-coincidence cuts

After anti-coincidence cuts

BKG_{μ} at 2530 keV < 0.0021 counts / (keV kg y) @ 95% CL

Low energy threshold trigger

New trigger algorithm: energy threshold down to few keV

Key concept: run the trigger on data processed with the optimum filter. Higher SNR ⇒ lower threshold

\[H(\omega) = \frac{S^*(\omega)}{N(\omega)} e^{-i\omega t_m} \]

- average signal shape (estimated from data)
- maximum position
- noise power spectrum (estimated from data)

Detection efficiency

![Detection Efficiency Graph]

- standard trigger thresh. ~ 20 keV
- new trigger thresh. ~ 3 keV

Study performed on three test bolometers

The region of interest for WIMP and Axion interactions in TeO$_2$ is below 25 keV

The new trigger algorithm, with a threshold of few keV, opens the possibility to search for dark matter signals in CUORE-0 and CUORE

JINST 6 (2011) P02007
Conclusions

- CUORICINO set the most sensitive limits on the half life of the following processes:
 - ^{130}Te neutrinoless double beta decay:
 \[T_{1/2}^{0\nu}(^{130}\text{Te}) > 2.8 \times 10^{24} \, y \text{, } 90\% \text{ CL} \]
 - ^{130}Te double beta decay to the first excited state 0^+ of ^{130}Xe:
 \[T_{1/2}^{0\nu}(^{130}\text{Te} \rightarrow ^{130}\text{Xe}^*) > 9.4 \times 10^{23} \, y \text{, } 90\% \text{ CL} \]
 \[T_{1/2}^{2\nu}(^{130}\text{Te} \rightarrow ^{130}\text{Xe}^*) > 1.3 \times 10^{23} \, y \text{, } 90\% \text{ CL} \]
 - ^{120}Te β^+/EC double beta decay:
 \[T_{1/2}^{0\nu}(^{120}\text{Te}) > 1.9 \times 10^{21} \, y \text{, } 90\% \text{ CL} \]
 \[T_{1/2}^{2\nu}(^{120}\text{Te}) > 0.9 \times 10^{20} \, y \text{, } 90\% \text{ CL} \]

- The muon-induced background was negligible

- The implementation of a low energy threshold trigger opens the possibility to perform dark matter searches in CUORE-0 and CUORE