The nuclear mass composition of UHECR with the Pierre Auger Observatory

L. Cazon, for the Pierre Auger Collaboration
LIP, Portugal
The Pierre Auger Observatory

Malargüe, Mendoza
Latitude 35 S – Longitude 69 W
1400 m a.s.l. X=870 g cm2
Data taking since 2004
Installation completed in 2008

Surface Detector (SD)
1600 Cherenkov stations spaced 1.5 km
Area of 3000 km2
100% duty cycle
Provides Large Statistics

Fluorescence Detector (FD)
4 building with 6 telescopes each
Telescope f.o.v. 30 x 30 deg
~10% duty cycle
Provides High Accuracy

+ Enhancements: AMIGA, HEAT, Radio, etc

See also the other Auger contributions on: Photons, neutrinos, anisotropies, hadronic interactions, Auger Enhancements, and the review talks on Cosmic Rays
Hybrid detector
FD & SD

\[E_{\text{cal}} = \int dX \frac{dE}{dX} \]

\(X_{\text{max}} \)

FADC trace
\(r_{\text{tank}} = 2098 \text{ m} \)

FADC trace
\(r_{\text{tank}} = 2262 \text{ m} \)

FADC trace
\(r_{\text{tank}} = 2481 \text{ m} \)
X_{max} and primary composition

- X_{max} reflects properties of the first interaction through X_1.
- Distributions for heavy primaries, as iron, are narrower and shallower. Lighter primaries, like protons, have a characteristic tail towards deep X_{max}.
- Hadronic interaction models predict different $\Delta X = X_1 - X_{\text{max}}$.

Selection cuts

Data Sample: FD events with signal in at least 1 SD station from December 2004 to September 2010

Selection of high quality events:
- Low aerosol content (vert. opt. depth > 0.1) & cloud coverage (<25%).
- $\chi^2/Ndf < 2.5$ for profile fit.
- Statistical uncertainty $X_{\text{max}} < 40 \text{ g/cm}^2$.
- Angle between shower and telescope > 20° (avoid high Cherenkov fractions).
- X_{max} observed.

15,979 events pass this quality selection [$E > 10^{18} \text{ eV}$].

Unbiased selection:
- Select the distance to the SD station, and zenith angle so that the tank trigger probability does not depend on the mass of primary.
- Select event geometries that allow to sample the whole X_{max} distribution (from measurement).

6744 events selected
X_{max} resolution

Validated with events with more than 1 FD station

Systematic Uncertainties

$X_{\text{max}} \rightarrow$ from 10 to 13 g/cm2

$\text{RMS}(X_{\text{max}}) \rightarrow$ 5 g/cm2

Energy dependent: low energy events have less signal and smaller tracks. At high energy, events are farther away and aerosol content uncertainty dominates.
Data are best described with two slopes; break is near the same energy as the ankle feature of the spectrum.

When compared to the models at high energy, data suggests a gradual increase of the average mass.

If hadronic interactions do not change much over less than 2 decades, this change on D_{10} would imply a change on the energy dependence of the composition around the ankle.
Resolution is subtracted from data: 27 g/cm² → low energy 18 g/cm² → high energy

There is a change in behavior around the same energy as X_{max}: above 2.5×10^{18} eV there is a fast decrease of RMS(X_{max}) towards the values expected for heavy primaries.
As the energy increases:
- narrower distributions
- deep X_{max} tail
less evident

Interpretation rely on the extrapolation provided by the different models
The model predictions have similar shapes but different $<X_{\text{max}}>$
Shape comparison

Shape at low energy fits lighter composition. Shape at high energy fits heavier composition.

L. Cazón

XII TAUP Conference 5–9 Sept 2011
Munich, Germany
Time structure of SD signals

Particle signals are merged in the Cerenkov tank. (Untangling is difficult).

EM: multiple scattering. Spread out in time. Their time distributions is related to the shower age. Dominate the signal in vertical showers and close to the core.

µ: less interacting. Travel in straight lines, they arrive first. Dominate at large distances to the core and in inclined showers. Time distribution is related to the distance of production.

Risetime ($t_{1/2}$): time required to go from 10% to 50% of the total signal.

The time structure of SD signals has information about shower development
Assymetry of signal risetime

The early-late assymetry \((b/a)\) as function of the zenith angle has a maximum \((\Theta_{\text{max}})\) which is correlated with \(X_{\text{max}}\).

\[
< t_{1/2} / r > = a + b \cos \zeta
\]

Event selection:
- \(30^\circ < \Theta < 60^\circ\)
- \(500 \text{ m} < r < 2000 \text{ m}\)
- \(E > 3.16 \times 10^{18} \text{ eV}\)

Systematic uncertainty \(\leq \sim 10\%\) proton-iron separation
Using Hybrids events

Θ_{max} and X_{max} are correlated. This correlation is independent of the primary.

18581 SD events (Jan 2004 – Dec 2010)

$E > 3.16 \times 10^{18}$ eV, and $30^\circ < \theta < 60^\circ$
Depth Profile of Muon Production Points

Muons are produced within a narrow cylinder centered on the shower axis. They travel along straight lines, practically unaffected by multiple scattering, pair production and bremsstrahlung.

This implies a direct relation between arrival time delay and the muon production distance

\[z \approx \frac{1}{2} \frac{r^2}{ct} + \Delta \]

Muon Production Depth: the depth, measured parallel to the shower axis, at which a given muon is produced. It can be obtained from the SD signals far from the core, for single events.

Event selection:
- \(55^\circ < \theta < 65^\circ\)
- \(r > 1800 \text{ m}\)
- \(E > 20 \text{ EeV}\)

Systematic uncertainty \(\leq 11 \text{ g/cm}^2\) (\(\leq 14\%\) proton-iron separation)
$X_{\mu_{\text{max}}}^\mu$ results

$X_{\mu_{\text{max}}}^\mu$ vs X_{max}^μ

$<X_{\mu_{\text{max}}}^\mu>$ vs E

MC events

244 SD events (Jan 2004 – Dec 2010)

$E > 20$ EeV $55^\circ < \theta < 65^\circ$

EPOS 1.89

OGSJETI 0.3

SIBYLL 2.1

Syst. Unc.
Conclusions

- \(<X_{\text{max}} > \) and RMS(\(X_{\text{max}} \)) recently updated with 80% more statistics, compatible with previous publication.

- \(X_{\text{max}} \) distributions become narrower as the energy increases. The deep \(X_{\text{max}} \) tail becomes shorter.

INTERPRETATION

- If hadronic interactions do no change much over less than 2 decades, this change on \(D_{10} \) would imply a change on the energy evolution of composition around the ankle towards heavier.

- At low energy, the data is consistent with a significant fraction of protons.

- The shape of the distributions is heavy-like at high energy, but for most of the models data would have to be adjusted to simultaneously match \(X_{\text{max}} \) and RMS(\(X_{\text{max}} \)) to a given composition mixture.

- **Change on the predictions of the available hadronic models would modify the interpretation in terms of primary mass**
Several SD observables related with the longitudinal development of air showers have been reconstructed: SD statistics allows us to reach higher energies.

- Compatible results with different systematics.
- Assuming that the hadronic interaction models are correct, the comparison of the data and simulation leads to the conclusion that the mean mass rises as the energy increases.

L. Cazón
The End
Back up slides